DIRPROG/AE/IOS/22-0002

OPTIMISATION OF THERMAL DIMENSIONING OF THE CIGEO PROJECT: OPERATIONAL GOALS AND SCIENTIFIC ISSUES

Gilles ARMAND, Jean-Michel BOSGIRAUD, Laurent CALSYN, Julie DIDIERJEAN

IGD-TP SYMPOSIUM – ZURICH / 20-22 September 2022

Introduction Cigéo Project scheme (current development)

Disposal located in the ZIRA at the middle of the Callovo Oxfordian claystone layer (some -500m depth)

HLW packages emplaced in series of parallel micro-tunnels (horizontal disposal cells) drilled (excavated) from access drifts

Micro-tunnels cased with steel liner for emplacement and retrievability

DIRPROG/AE/IOS/22-0002

Objectives at large

Technical (economical) objectives :

- Reducing the disposal underground footprint
 - Reducing the cumulated length of disposal cell access drifts
 - Reducing the spacing between HLW disposal cells

Scientific (long term safety) objectives :

- Preventing host rock fracking induced by thermal loading (generated by the thermal power of the HLW packages)
 - Improving geotechnical knowledge and host rock behaviour under thermal loading
 - Planning in vitro and in situ tests at various scales of time and space

High Level Waste (HLW) repository Design criteria

HLW disposal packages will be emplaced in a network of parallel dead end micro-tunnels excavated from access drifts

Heat emitted by HLW will generate in the Callovo-Oxfordian claystone

- Transient temperature increase
- Transient pore pressure build-up
 - Due to the differential thermal expansion of the Callovo-Oxfordian skeleton and pore water
 - Generation of transient mechanical field that can lead to fracturing (extension, shear) at multiscale

Design criteria/long term safety requirements are defined to preserve "favorable properties of the Callovo-Oxfordian formation"

- Maximum temperature in (at contact) the host rock limited at 90°C
- \circ Prevent damage/fracture initiation in the rock (THM criterion)

THM behavior of the COx claystone under thermal load Interaction between parallel HWL disposal cells

/IOS/22-0002

2D calculations at the middle of the cells

h Depending on the spacing between cells σ'_ν could reach the unixial tensile strength of the rock inducing sub horizontal damage/cracking

Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.

Modeling THM behavior of the COx claystone under thermal load Schematic THM behaviour

• Example of the evolution of the effective stresses and pore pressure at the distance between two cells

THM behavior of the COx claystone under thermal load A step wise approach : Upscaling from sample to repository scale

• How to go from sample to a demonstrator (metric scale) in a URL to the scale of a repository?

 How to extrapolate data from URL (size of 0.1 km²) to a repository footprint of about 8.5 km²? How to take into account geological variability ?

THM tests carried out on Callovo-Oxfordian samples Results obtained at sample scale

- Thermal pressurization tests on Callovo-Oxfordian samples (cored perpendicularly to sub horizontal stratification orientation)
 - Stress path conducts to the apparition of one horizontal fracture
 - Effective tensile stresses between 0,5 et 4 MPa
 - Coherent with those obtained by traction tests

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.

σa

Braun, 2019

THM in situ tests carried out at the Meuse/Haute-Marne URL From borehole scale to 1:1 cell scale : Overview

DRD/MFS/19-0124

THM in situ tests carried out at the Meuse/Haute-Marne URL Objectives and results

o Disposal cell experiment

- Demonstration test to build a full scale micro-tunnel
- In situ test enabling to increase knowledge on THM behavior and verify accuracy of numerical models at full scale
- Results:
 - Pressurization coefficient ($\Delta P/\Delta T$) similar the one measured at small scale test
 - A good reproduction of the pressure increase within a poroelastic approach
- o CRQ experiment :
 - Evaluate the host rock THM behaviour under thermal loading as it could be generated in Cigéo at mid-space between two disposal cells
 - Pursue the thermal loading until rupture of rock
 - Results :
 - Volumetric deformation and fracking observed
 - Need of a second test to confirm results (values obtained) and observations made

Mastering the THM behaviour of the Callovo-Oxfordian Thermo-poro-elasticity : a robust approach

 Thermo-poro elasticity model allows a good prediction of the THM behaviour at the borehole and the disposal cell scale

Benchmark exercise DECOCALEX2019

Perpendiclular to the beding In the beding plane plane Heating Anisotropic thermo-elasto-Heating 50 viscoplastic model ភ្ ⁴⁵ ូ⁴ - Elasti (elastic and strength anisotropy) ≝ 40 ≝ 40 8 35 - Elastoplasti gu 8 35 30 Elastoplastique+fluag UNIVERSITAT POLITÈCNICA 25 25 DE CATALUNYA RCELONATEC 20 20 750 1000 1250 500 750 1000 500 ò 250 1250 Time [years] Time [years] 1E+01 1E+03 Temps (ans) AND - Plastique Px/2 - Thermonlastique Px/2 - - Thermonlastique Px/ Elastoplastic model 1617 3 (based on CamClay) and thermoplasticity 250 500 750 1000 1250 1500 250 500 750 1000 1250 1500 Time (years Time (years ParisTech NW/MO LIEZ-BG nwmo Ouintess BGR 10 100 1000 Temp [ans] The thermo-poro-elastic approach is robust for the design of Cigéo

- Calculation at the repository scale
 - The thermo-poro-elastic approach overestimates the effective stresses compared to the other models

DRD/MFS/19-0124

THM behavior of the COx claystone under thermal load Spatial variability of the THM parameters

Use of multiscale investigations

- o Laboratory measurements on the samples
- $\circ\;$ Geophysical measurements on the boreholes (Well logging)
- \circ Wave propagation investigation at the site scale (3D high-resolution impedance $I_P = \rho V_P$, $I_S = \rho V_S$)

Spatial variability determined from 3D impedance

- \blacklozenge Correlation of TM parameters as a function of I_{P} and I_{S}
- 3D spatial distribution of TM parameters on ZIRA and uncertainty estimation (Young modulus and thermal conductivity)
- No correlation with permeability

Data and uncertainties have been considered for the current design

Ce document e CPLANGI 150000A II Il ne peut être reproduit ou communique sans son autorisation expresse et prealable.

Concluding remarks Main THM phenomena and key parameters

Pore pressure increase due to

- $\circ~$ Difference between thermal expansion of pore water and solid skeleton
- Relative high rigidity of the Callovo-Oxfordian formation
- Low permeability of the Callovo-Oxfordian formation
- Periodic boundary conditions in link with HLW disposal cell network Thermal damage
- Diffuse thermomechanical damage due to differential thermal expansion of the Callovo-Oxfordian mineralogical components
 - Non significant at the range of the applied temperatures
- $\circ~$ Possible localised damage (fracking) induced due to excessive pore pressure increase
 - High values of pore pressure can be reached due to thermo-hydromechanical pressurization and boundary conditions

Most influent parameters

- Rock stiffness (Young modulus)
- o Water permeability
- Thermal conductivity

Model for the THM behaviour

 $\circ~$ Thermo-poro-elasticity is an accurate model for the design

Concluding remarks Ongoing work

Need to consolidate data and to reduce remaining uncertainties, even if for Cigéo licensing application, a conservative design approach has been already chosen

- Small scale THM behaviour/processes
 - THM Coupling and parameters
 - Definition of an appropriate effective stress concept
 - Reducing the uncertainty on the key parameters

$\circ\,$ Less conservative failure criteria

- Failure initiation in a confined non-damaged zone due to pore pressure build-up
- Inherent/induced anisotropy
- Effective stresses (Biot coefficient,...)
- $\circ\,$ Upscaling of THM parameters from sample/URL to repository area

$_{\odot}$ Assessment of consequences of a possible damage

Sealing capacity of Callovo-Oxfordian

Optimisation through the Industrial Pilot Phase

The lessons learnt from the first 15-25 years of the industrial pilot phase should yield valuable optimisation opportunities

- Design hypothesis (THM behaviour)
- Design concepts (HLW pilot zone)
- Conduct of construction work activities and nuclear operations

15

DIRPROG/AE/IOS/22-0002 20/09/2022

