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1. Introduction 

The CHANCE project aims to address the specific issue of the characterization of conditioned 

radioactive waste. The characterization of fully or partly conditioned radioactive waste is a specific issue 

because unlike for raw waste, its characterization is more complex and therefore requires more advanced 

non-destructive techniques and methodologies.  

The objective of CHANCE is to further develop, test and validate techniques already identified that will 

improve the characterization of conditioned radioactive waste, namely those that cannot easily be dealt 

with using conventional methods. Specifically, the work on conditioned radioactive waste 

characterization technology will focus on: 

 Calorimetry as an innovative non-destructive technique to reduce uncertainties on the inventory 

of radionuclides; 

 Muon Tomography to address the specific issue of non-destructive control of the content of 

large volume nuclear waste; 

 Cavity Ring-Down Spectroscopy (CRDS) as an innovative technique to characterize outgassing 

of radioactive waste. 

The present report focuses on activities from Work Package 4 related to the development of the Muon 

Scattering Tomography (MST) for the characterization of large and dense objects, for instance, nuclear 

waste packages. MST uses cosmic ray muons that are highly penetrating particles; thus, it can allow for 

three-dimensional imaging of sealed waste packages which use dense matrix material (e.g. concrete or 

bitumen) to immobilize radioactive waste. 

During the CHANCE project, we developed several methods for the identification of objects in the 

radioactive waste packages. These methods allow for the recognition of the blocks of material, both 

high-density and low-density ones, and finding their size (or volume) and location.  

We first tested these methods using realistic Monte Carlo simulations of the CHANCE muon scattering 

system, and then we analyzed the experimental data collected with the CHANCE muon detector.  

This report is based on results presented at meetings and conferences (1), (2), and published in (3).  

 

2. Muon Scattering Tomography 

Muon scattering tomography is a non-invasive method which allows producing 3D images of closed 

and high-density objects, thus is it well suited non-destructive assay for the characterization of nuclear 

waste packages. MST uses cosmic rays as probes. Cosmic rays are high energy, charged particles which 

come to the Earth’s atmosphere from outer space. In the atmosphere, cascades of new particles are 

produced. The main type of particles that reach sea level are muons. Muons are identical to electrons, 

but 200 times heavier. Muons can go through large amounts of material as they do not scatter very much 
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due to their high mass. When traversing material, Coulomb interactions take place between the muons 

and the nuclei of the material. As a result, muons exit the material under an angle. The angular 

distribution of scattering of muons can be described by a Gaussian distribution with a mean of zero and 

a standard deviation 𝜎𝜃 described by (4): 

 

σθ =
13.6 𝑀𝑒𝑉

𝑝𝑐𝛽
√

𝑇

𝑋0
[1 + 0.038𝑙𝑛 (

𝑇

𝑋0
)]    (1.1) 

𝑋0 ≈
716.4𝐴

𝑍(𝑍+1)𝑙𝑛(
287

√𝑍
)
 [𝑔 ∙ 𝑐𝑚−2]     (1.2) 

 

Where p is the muon’s momentum,   the muon’s speed divided by the speed of light c, T is the thickness 

of the material and X0 its radiation length. A is the atomic weight of the medium in gmol−1. The standard 

deviation depends on the atomic number, 𝑍, of the traversed material. Under the assumption that 

scattering occurs in single locations and by reconstructing the incoming and outgoing trajectories of the 

muons, the scattering angle distribution can be reconstructed and thus information about the traversed 

material can be extracted. 

Muon tomography requires both the incoming and outgoing muon trajectory to be measured. Hence, the 

object under inspection needs to be covered on both sides. As muon tomography relies on reconstruction 

of the scattering angle, the key parameter for the detector system is the angular resolution of the upper 

and lower detector system.  

2.1 Imaging objects with Muon Scattering Tomography 

Point of Closest Approach algorithm  

Imaging with muon tomography is based on registration the incoming and outgoing muon trajectory. In 

the simplest approach, called the Point of Closest Approach (PoCA) algorithm, multiple scatterings of 

a muon are modelled as a single scattering at a single point (‘scattering vertex’), see Figure 1. The 

scattering vertex is found by extrapolating the incoming and outgoing tracks and searching for a point 

at which the distance between them is minimal.  
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Figure 1: Illustration of scattering vertex reconstruction of a muon (5) 

To obtain a 3D image, the scanned volume is divided into cubic voxels. The number of scattering 

vertices and the scattering angle reconstructed in each voxel depends on the radiation length of the 

material in that voxel. Thus, analysis of the density of scattering vertices, their distribution and 

distribution of a scattering angle provide means to discriminate between material with different atomic 

number 𝑍. 

In the PoCA algorithm, the image is obtained as a 3D density map of the scattering vertices, 

sometimes weighted by a value of scattering angle. Such an approach is simple, but it suffers from 

intrinsic noise due to single-scattering-point approximation. In our studies, we developed more 

advanced methods, based on Binned Clustering (BC) algorithm (6). It builds on PoCA and exploits the 

spatial density of scattering vertices to improve image resolution and quality. 

 

Binned Clustering algorithm 

The Binned Clustering algorithm (6) employs spatial density of the scattering vertices to discriminate 

between materials of different densities. The principle of the BC method is as follows: 

1. The volume is divided into voxels (for instance cubes of side length 1 cm) and location of muon 

scattering vertices is calculated within each voxel. 

2. Within each voxel, scattering vertices are sorted into descending order by the scattering angle. 

The first n entries in the list are kept and the rest discarded. Voxels with less than predefined 

value of n scattering vertices are discarded. 

3. For each pair of vertices i, j in each voxel, a metric value mi,j is calculated as  
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𝑚𝑖,𝑗 =
|𝐕𝑖−𝐕𝑗|

(𝜃𝑖𝑝𝑖)(𝜃𝑗𝑝𝑗)
                                                                                

 

where Vi, θi and pi are, respectively, the scattering vertex position, scattering angle, and 

momentum of muon i. Then, |𝐕𝑖 − 𝐕𝑗| is a matric distance between vertex i and j.  

For high-Z materials the density of the scattering vertices is higher (this the distance between 

voxels is shorter) and scattering angles are larger thus the metric value is lower. 

The original BC method uses median of the ln(mi,j) distribution in a voxel as a material-discriminating 

variable. In our studies, we adopted slightly modified definitions of the discriminator to maximize 

performance for low-Z and high-Z object identification. We provide details in Sec. 5.1 and 6.1. 
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3. CHANCE Muon Scattering Tomography system 

The CHANCE muon tomography system was build using Resistive Plane Chamber (RPC) and Drift 

Chamber detectors. For the details of the system configuration and its performance, please see D4.1: 

Report on Performance of the Muon Detector System. Here we provide only a short description and 

information relevant for material identification studies presented in this report.  

The CHANCE muon tomography system consists of 30 Resistive Plate Chambers (RPCs), 18 Drift 

Chambers, and plastic scintillator trigger panels. The panels are located in two perpendicular 

orientations, namely X and Y: each orientation detects hits in the (X, Z) and (Y, Z) planes, respectively, 

together forming a 3D track. The detector was operated in a non-laboratory environment, at the 

Fenswood Farm, 5 miles south-west of Bristol, UK. Each RPC plane is 200  200 cm.   

During the projects, there were 2 different experimental configurations used. Configuration A 

corresponds to trigger panels, drift chambers and 4 layers of RPCs, and Configuration B consists of 

trigger panels, drift chambers and 5 layers of RPCs.  Figure 2 (right) shows the Configuration A of the 

system, while Configuration B is presented in Figure 2 (left). Figure 2 (left) also shows a mock-up drum 

during the experimental program. The drum has a diameter of approximately 66 cm and a length of 88 

cm, and it was positioned in the center of CHANCE muon tomograph system. 

To quantify the system's performance in a size and position reconstruction and quality of the material 

identification, we placed objects of known material inside the measurement area during the data-taking 

campaign. We used blocks of lead, tungsten, steel, and aluminum; each of them had a size of 

approximately 5x5x5 cm, and there were located alongside the mock-up drum. 
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Figure 2: The CHANCE muon detector: the configuration A (right) and configuration B (left). See text 

for details. 
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4. Configuration of the muon tomography system used in simulation studies 

We did quantitative studies of the performance of muon tomography algorithms in the reconstruction of 

known blocks of materials using realistic simulations of the CHANCE muon detector using GEANT4 

(7; 8)  model. GEANT4 is a tool for Monte Carlo simulation of detector performance used widely in 

particle and nuclear physics, including medical physics. For example, such simulations are used for the 

calculation of detector efficiencies and performance by experimental collaborations at the Large Hadron 

at CERN and Relativistic Heavy Ion Collider in Brookhaven National Laboratory. Thus, the Monte 

Carlo studies are robust (in fact, GEANT4 is an industry standard), and allow us for reliable performance 

studies of the algorithms that use muon tomography for the identification of the shape, size, and material 

content of the bodies in conditioned waste packages.  

The muon tomography system in our studies closely reassembles the original configuration 

(Configuration A) of the CHANCE muon detector (see CHANCE D4.1: Report on Performance of 

the Muon Detector System) and it is presented in Figure 3. It consists of layers of Resistive Plane 

Chambers (RPCs), drift chambers, and plastic scintillator detectors used as trigger devices. The spatial 

resolution is 350 µm for RPCs and 2 mm for the drift chambers. The detector modules are approximately 

2 m x 2 m. 

 

 

Figure 3: Muon scattering tomography detector 

system simulated with GEANT4 within the 

CRESTA framework.  

 

 

The waste container is a drum made of 25 mm thick steel with a diameter of approximately 60 cm and 

a length of about 100 cm (see Figure 4). We simulated different cases where the matrix material in the 

drum was either concrete (density of 2.3 g cm-3) or bitumen (with density of 1.35 – 1.41 g cm-3). The 

study was performed using cosmic-ray simulation framework CRESTA (9), which is built on the Geant4 

particle physics toolkit and the CRY cosmic ray library. 

  

Figure 4: The simulated steel nuclear waste 

drum 
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5. High-Z material identification in nuclear waste drums  

We developed a method for high-Z material identification that uses multivariate analysis techniques to 

locate and identify materials in nuclear waste drums (3). We investigate its performance for iron, lead, 

and uranium samples within the concrete matrix. 

5.1 Method for material identification using Muon Scattering Tomography and Multivariate 

Analysis  

The method employs Binned Clustering (BC) algorithm (6), which uses spatial density of the scattering 

vertices to discriminate between materials of different densities. We use the BC algorithm to build 

discriminator variable as follows: 

1. The volume is divided into voxels of side length 1 cm and location of muon scattering vertices 

is calculated within each voxel. 

2. Within each voxel, scattering vertices are sorted into descending order by the scattering angle. 

The first n = 5 entries in the list are kept and the rest discarded. Voxels with less than n = 5 

scattering vertices are discarded. 

3. For each pair of vertices i, j in each voxel, a metric value mi,j is calculated as  

 

𝑚𝑖,𝑗 =
|𝐕𝑖−𝐕𝑗|

(𝜃𝑖𝑝𝑖)(𝜃𝑗𝑝𝑗)
                                                                                

 

Where Vi, θi and pi are, respectively, the scattering vertex position, scattering angle, and 

momentum of muon i. For high-Z materials the density of the scattering vertices is higher (this 

the distance between voxels is shorter) and scattering angles are larger thus the metric value is 

lower. 

4. The distribution of log(mi,j) values within each voxel is then used as input for Multivariate 

Analysis using the TMVA machine learning package.  

The initial analysis of the performance of available machine learning methods showed that gradient-

boosted decision trees offer the best performance; thus, we used this approach in our studies. After the 

initial decision regarding the voxel content and discrimination between the concrete matrix and high-Z 

material of interest, the voxels were clustered to reassemble bodies stored in the waste drums. We used 

k-means++ clustering algorithm for this purpose. Finally, we applied multivariate analysis to these 

clusters to identify which material they consist of. Please refer to (3) for details of the clustering and the 

MVA analysis.  

5.2 Performance of size and position reconstruction and quality of the of high-Z material 

identification 

To evaluate the performance of the method for material identification, we simulated objects made of 

uranium, lead, and iron of different shapes and sizes dispersed throughout the waste drum. For each test 

case, we simulated muon track data corresponding to a 10-day exposure.  
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The first round of validation consists of simulations of 15 and 10 cm cubes of uranium, lead, and iron 

aligned with the voxel grid. Figure 5 shows the result of the test for 10 cm objects, together with assigned 

material scores, i.e. the probability that a given object is made of U, Pb or Fe, respectively.  For each 

object the method found its location and assigned the correct material. 

Figure 6 shows the material identification result for more complicated geometry, where U, Fe and Pb 

objects have different sizes, locations and rotation. In this case, the method has accurately identified the 

material for each object. 

Figure 7 present a further test, where objects of various shapes, sizes, orientation, and rotation are 

distributed in the drum. This is a much more challenging case, but the method still performs well. 

The reconstructed clusters reassemble true locations of the stored objects, and the method correctly 

assigned material for four out of five simulated bodies: both uranium objects, the iron sphere, and one 

of the lead objects (no. 4).  The lead tube (object no. 2) has been incorrectly identified as iron, which 

may indicate a limitation of the method in determination the materials of non-spherical objects. 

5.1 Sensitivity of the method and false positive rate 

The method sensitivity was evaluated by using a set of 100 simulations of a waste drum with three 

spheres of radius 6 cm, randomly located throughout the drum but constrained not to intersect each 

other. Fifty simulations contained one U, one Pb and one Fe object, and the remaining consisted of two 

lead spheres and one iron sphere. A true positive identification of a uranium object was defined as the 

case when an object is identified close to the true location of the simulated U sphere, and the method 

allocated uranium to that object. The false positive corresponds to the case when the algorithm assigns 

uranium to a body that does not contain uranium. We found the method sensitivity to uranium is 

0.90−0.12
+0.07 and a false positive rate of 0.12−0.07

+0.12 (quoted as 95% Clopper-Pearson confidence intervals). 
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Figure 5: Material identification results for 10 cm cubes, uranium, lead and iron, aligned with the voxel 

grid. The method has accurately identified the correct material for each object. 
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Figure 6: Material scores for three objects made of uranium, lead and iron of different size, location 

and rotation. The method has accurately identified the correct material for each object. 
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Figure 7: Material scores for three objects made of uranium, lead and iron of different shape, size, and 

location. The method has accurately identified four objects; one lead object (no. 2) was incorrectly 

classified as iron. 
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6. Gas bubble (low-Z material) identification in nuclear waste  

During the CHANCE project, a new approach to gas bubble and void detection was developed. It is 

based on voxel-by-voxel identification of low-density materials and allows for the detection of the 

location of gas bubbles (or voids) and calculation of their volume. 

6.1 Method for gas bubble detection using muon scattering tomography 

The principle of the method is similar to the one described in 5.1 Method for material identification 

using Muon Scattering Tomography and Multivariate Analysis: 

1. The volume is divided into voxels of side length 3 cm. To select a default voxel size, we 

analyzed Receiver Operating Characteristic (ROC) Curves for signal and background separation 

for 1, 2, 3, 4, and 5 cm voxels. The 3-cm voxel case provided the best ROC (measured as the 

area under the curve); thus, we used 3-cm voxels in our studies. 

2. The location of muon scattering vertices is calculated within each voxel.   

3. Within each voxel, scattering vertices are sorted into descending order by the scattering angle. 

4. For each pair of vertices i, j in each voxel, a metric value mi,j is calculated as  

 

𝑚𝑖,𝑗 =
|𝐕𝑖−𝐕𝑗|

(𝜃𝑖)(𝜃𝑗)
                                                                                

 

where Vi and θi are the scattering vertex position and scattering angle of muon i.  

5. The median of distribution of mi,j values (Median Metric) within each voxel is then taken as an 

observable for material discrimination between gas and other materials. 

To establish the decision threshold for gas detection, we analyzed distribution of Metric Median for 

matrix material (bitumen, density 1.41 g cm-3) and hydrogen. Figure 8 shows these distributions (in 

black for bitumen-filled voxels and in read for hydrogen voxels), and Figure 9 presents the efficiency 

and purity of hydrogen voxel identification as a function of a threshold applied to Median Metric values. 

The threshold was selected such purity and efficiency are maximized. Since the value of Median Metric 

may depend on location in the waste container, the drum was divided into 10-cm wide regions (see 

Figure 10), where such an analysis was conducted separately to calculate the location-dependent 

decision threshold. The efficiency of hydrogen detection is better than 90% for each of these regions, 

with false-positive rate lower than 10%. 

Such an approach automatically removes any object with a density larger than the matrix since for 

higher-Z material the median of the metric mi,j distribution will have a lower Median Metric. Thus, its 

takes into account both the bitumen and blocks of higher-Z substances, like iron or uranium. 
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Figure 10: Illustration of the selection of the areas used to establish threshold for separation of 

hydrogen from waste package matrix and other higher-Z materials. 

 

6.1 Performance of volume and position reconstruction and quality of the of gas bubbles 

(low-Z material) identification 

Figure 11 shows a 3D image of two reconstructed hydrogen bubbles, which were simulated within the 

bituminized waste drum. Their location matches well the simulated objects.  

To evaluate the precision of the method and its detection limits, we simulated different hydrogen 

volumes within waste container filled with bitumen. Figure 12 shows the obtained reconstructed volume 

vs the simulated (true) one. The data points show the results calculations, the line represent a linear 

function fit together with its uncertainties (one- and two-standard-deviation contours).  

Our initial investigation indicates that the relative uncertainty on hydrogen volume measurement using 

muon scattering tomography and voxel-by-voxel approach is below 10% for bubbles larger than 0.85 L. 

Based on the fit result and its uncertainty, we estimated the detection limit of this method be 0.55 liter 

at a 95% confidence level. 

 

Figure 8: Distribution of Median Metric for matrix 

material (bitumen, in black) and hydrogen (in 

red) for 3 cm voxels.  

Figure 9: The efficiency and purity of hydrogen 

detection in the bituminized waste container as a 

function of decision threshold of Median Metric. 
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Figure 11: 3D image of two 4-L hydrogen 

bubbles, extracted for a case where a bitumen-

filled drum with two bubbles was simulated. 

 

Figure 12: Reconstructed hydrogen volume vs 

simulated amount of gas for a bituminized 

waste container. 

7. Experimental results 

We analyzed experimental data separately for Configuration A and B of the CHANCE muon systems, 

as described in Section 3. We started with a simple PoCA method, where the scattering points were 

reconstructed independently in XZ and YZ planes.  

The scattering vertex is taken as an intersection of two tracks registered in the top and the bottom parts 

of the system. Each of these tracks is reconstructed independently in XZ or YZ plane. We required at 

least two hits in the top or bottom detector for each track, respectively. The image is then created as a 

density map of the PoCA scattering vertices within the CHANCE muon system geometry. 

Figure 13 -  Figure 24 show the PoCA image (the density of the reconstructed scattering vertices) for 

XZ and YZ projections of the data collected with the CHANCE detector with two hardware 

configurations, i.e.  Configuration A and B, respectively. The rectangular and circular shapes indicate 

the position of the mock-up waste drum during the data taking.  

We first used small voxels (2 cm x 2 cm) to check if we can obtain a high-resolution image of the drum. 

Figure 13 - Figure 16 present results for all available tracks, while results in Figure 17 and Figure 18 are 

for tracks with the reconstructed scattering angle less than 15º. With such small bins, the track sample 

per voxel is low, and we next used bigger voxels of 20 cm x 20 cm to try to remedy this issue.  Figure 

19 - Figure 24 show results with large voxels, again for all tracks (Figure 19 - Figure 22) and those with 

the reconstructed scattering angle less than 15º (Figure 23 - Figure 24). 

As explained in the D4.1 report, we were caught by surprise by a Freon ban that came into force at the 

early phase of CHANCE. This forced us to use CO2 in the RPC system. CO2 yields a much lower hit 

efficiency. In order to reconstruct tracks, hits in all traversed layers are required. Hence, the efficiency 
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to detect tracks reduces by the product of the efficiency of all layers. This led to a very small track 

sample. Due to limited statistics, we were not able to perform more differential experimental studies of 

the performance of methods of material identification we had developed for the CHANCE muon 

scattering tomography system. 
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Figure 13: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration B of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. The black rectangle presents the expected 

location of the mock-up waste drum. 

 

Figure 14: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration B of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. The black circle presents the expected 

location of the mock-up waste drum. 
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Figure 15: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. The black rectangle presents the expected 

location of the mock-up waste drum. 

 

Figure 16: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. The black circle presents the expected 

location of the mock-up waste drum. 
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Figure 17: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. Only candidates with scattering angle less 

than 15º were plotted. The black rectangle 

presents the expected location of the mock-up 

waste drum. 

 

Figure 18: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 2 cm 

x 2 cm. Only candidates with scattering angle less 

than 15º were plotted. The black circle presents 

the expected location of the mock-up waste drum. 

 

 

 

 



© CHANCE 

CHANCE 
D4.2 Performance of the CHANCE muon 

system in the reconstruction of known 

blocks of material 

Written:  Listed on page 2   

Organisation: Listed on page 2 Version:  0.1 

 Issued:  Page(s):  23 

 

 

 

CHANCE (D4.2) -  

Dissemination level: PU 

Date of issue of this report: May 2022  

 

Figure 19: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration B of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. The black rectangle presents the 

expected location of the mock-up waste drum.  

 

Figure 20: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration B of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. The black circle presents the expected 

location of the mock-up waste drum. 
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Figure 21: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. The black rectangle presents the 

expected location of the mock-up waste drum. 

 

Figure 22: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. The black circle presents the expected 

location of the mock-up waste drum. 
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Figure 23: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the XZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. Only candidates with scattering angle 

less than 15º were plotted. The black rectangle 

presents the expected location of the mock-up 

waste drum. 

 

Figure 24: Distribution of scattering vertices 

reconstructed using the PoCA algorithm with 

CHANCE muon tomography system in the YZ 

plane. Results for Configuration A of the 

CHANCE muon detector and voxel size of 20 cm 

x 20 cm. Only candidates with scattering angle 

less than 15º were plotted. The black circle 

presents the expected location of the mock-up 

waste drum. 
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8. Summary 

We analyzed performance of the CHANCE muon tomography system in the reconstruction of known 

blocks of material, with focus on high-Z elements, and gas bubbles (thus low-Z and low-density objects). 

We presented the studies done using realistic Monte Carlo simulations of the CHANCE muon detector. 

They allowed us for reliable performance evaluation of the algorithms that we developed during the 

project. Our quantitative analysis showed the method for high-Z material identification performs well 

in the recognition of blocks of uranium, lead and iron in the conditioned nuclear waste packages. We 

found the method sensitivity to uranium is 0.90−0.12
+0.07 and a false positive rate of 0.12−0.07

+0.12 (quoted as 

95% Clopper-Pearson confidence intervals). 

The initial results of a novel method of gas detection in bituminized waste containers are very promising, 

pointing into a gas detection limit of 0.55 L at 95% confidence level. 

Unfortunately, due to the limited size of our track sample, we were not able to perform more differential 

experimental studies of the performance of methods of material identification we had developed for the 

CHANCE muon scattering tomography system. 
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1 Introduction

It is important to develop non-destructive methods to determine the contents of sealed nuclear waste
packages, in order to minimise the risks of environmental contamination and personnel radiation
exposure and to allow for more effective safeguarding. Non-Destructive Assay (NDA) techniques
in current use include calorimetry and Muon Scattering Tomography (MST).

NDA techniques can analyse drum contents in a variety of ways. For example, calorimetry
can be used to measure the mass of nuclear material inside a container by its heat emission [1].
In contrast, MST (with exposure times of several days to weeks) can produce full 3D images of
a volume of interest, allowing individual objects inside the drum to be viewed as well as giving
information on their atomic number 𝑍 and density [2].

Simulation studies are useful tools to assess MST techniques and algorithms; the technique
described in this paper was developed and tested via Monte Carlo simulations. It uses MST data
in combination with Multi-Variate Analysis (MVA) classifiers and clustering algorithms to approx-
imately identify the locations and shapes of objects stored in a concrete-filled waste drum. Subse-
quently, additional trained classifiers are applied to each identified object to classify them as ‘iron’,
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‘lead’, or ‘uranium’, representing low-threat medium-𝑍 material, low-threat high-𝑍 material, and
high-threat high-𝑍 material respectively. The use of these four materials allows three classification
problems of interest to be investigated: separation of stored objects from the concrete background,
separating medium- and high-𝑍 materials, and distinguishing between two high-𝑍 materials.

Previous applications of machine learning techniques to MST imaging have demonstrated
methods for distinguishing between drums containing uranium and lead blocks [3] and for recon-
structing the size of uranium blocks [4]. Our system builds on these through the ability to isolate
and identify multiple distinct bodies of different materials and sizes in a waste drum. Other previous
research into combining machine learning and MST include applications in cargo scanning [5, 6],
a related problem for which short exposure times are required.

2 Muon scattering tomography

Cosmic rays interact with the Earth’s atmosphere to produce showers of particles, some of which
subsequently decay to muons, resulting in a muon flux at sea level of around 1 cm−2 min−1 [7]. These
cosmic ray muons are highly penetrating due to their large mass and lack of strong interactions.
They have an angular distribution that varies approximately as cos2 𝜃, where 𝜃 is the zenith angle.
Muons are also highly sensitive to the atomic number 𝑍 of the material they are passing through,
making them suitable candidates for tomographic imaging of nuclear waste drums.

Muons undergo multiple elastic Coulomb scatterings in matter, with the projected scattering
angles following an approximately Gaussian distribution with width 𝜎 given by

𝜎 ≈ 13.6 MeV
𝛽𝑐𝑝

√︁
𝑋/𝑋0 (2.1)

where 𝛽 is the muon speed divided by the speed of light in a vacuum, 𝑐; 𝑝 is the muon momentum,
𝑋 is the thickness of the material and 𝑋0 is the radiation length of the material [8]. The latter is
given by

𝑋0 =
716.4𝐴

𝑍 (𝑍 + 1) ln(287/
√
𝑍)

[
g · cm−2] (2.2)

where 𝜌 is the material density and 𝐴 is atomic mass [9].
A general MST experiment consists of two sets of particle detectors, one above and one below

some volume of interest such as a waste drum (see figure 1). Multiple layers of detector are
necessary in order to construct a three dimensional trajectory for each muon from the detector hits.
This allows the incoming and outgoing trajectories of each muon to be measured and hence the
muon scattering angles to be calculated.

Several algorithms have been developed to enable imaging of a volume of interest from MST
data. The simplest is the Point of Closest Approach (PoCA) algorithm [10], which models a
muon’s multiple scatterings as a single scattering at a single point (‘scattering vertex’), found
by extrapolating the incoming and outgoing tracks into the volume and finding the point which
minimises the distance to each. This assumption allows for fast computation at the expense of
image quality. A more advanced MST algorithm has been used in this study (see section 2.1) which
builds on PoCA by exploiting the spatial density of scattering vertices; a high density of scattering
vertices corresponds to the presence of high-𝑍 material as large-angle muon scatterings occur more
often in such materials.

– 2 –
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Figure 1. Schematic showing the principle of muon scattering tomography applied to a nuclear waste
drum containing a block of high-𝑍 material (in green). Particle detectors measure the trajectories of muons
before and after encountering the volume of interest, allowing the scattering angle 𝜃 (here exaggerated) to be
calculated.

2.1 Binned clustering algorithm

This algorithm, developed in [11], improves on the widely-used Point of Closest Approach (PoCA)
muon tomography algorithm [2] by taking into account the degree of spatial clustering of muon
scattering vertices. A higher density of vertices corresponds to higher-𝑍 materials (once the muon
momentum is accounted for, see below) as strong muon scatterings take place with greater frequency
in such materials.

The volume is divided into cubic voxels of side length 1 cm. The incoming and outgoing muon
tracks are extrapolated through the volume, and the point at which the distance between the tracks
is minimal (the PoCA) is designated as the scattering vertex for the muon. This is repeated for all
of the detected muons that encounter the volume of interest. Next, the scattering vertices inside
each 1 cm3 voxel are sorted by the scattering angle of the corresponding muon, and the vertices
corresponding to the 𝑛 largest scattering angles are kept (voxels which contain less than 𝑛 vertices
are discarded). This factor of 𝑛 is an important tunable parameter of the algorithm. High values of
𝑛 improve the contrast between high and low-𝑍 materials, as a greater sample of muons are kept,
but reduce image ‘quality’ (i.e. the number of non-empty voxels in the image) as more voxels fall
below the cut and are removed from the image.

– 3 –
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Figure 2. Comparison of distributions of the binned clustering algorithm discriminator, for 20 cm cubes of
uranium and concrete. Lower discriminator values correspond to higher 𝑍 material.

For each of the
(𝑛
2
)

pairs of vertices 𝑖, 𝑗 in each voxel, a metric value 𝑚𝑖 𝑗 is calculated
according to

𝑚𝑖 𝑗 =
|V𝑖 − V 𝑗 |

(𝜃𝑖𝑝𝑖) · (𝜃 𝑗 𝑝 𝑗)
(2.3)

where V𝑖 , 𝜃𝑖 and 𝑝𝑖 are respectively the position, scattering angle and normalised (by a factor of
3 GeV/c) momentum of muon 𝑖. Weighting by muon momentum is necessary as large scattering
angles could indicate low-momentum muons being scattered in low-𝑍 materials instead of strong
scattering in high-𝑍 materials. In an experimental system, the muon momentum can be estimated
using the muon scatterings between the detector planes, as the planes are of known material and
thickness. Following the method of [12], for our simulations the momentum was obtained by adding
a smearing factor to the Monte Carlo truth momentum. The smearing factor was drawn from a
Gaussian with width 50% of the Monte Carlo truth momentum.

Finally, the median of the distribution of log(𝑚𝑖 𝑗) in a voxel is determined; this is the algorithm’s
discriminator value for that voxel. Comparing the distributions of this discriminator for high- and
low-𝑍 materials shows that the discriminator is sensitive to 𝑍 (see figure 2).

For imaging purposes, each voxel is filled with its discriminator value as described above,
creating a tomogram of the volume of interest. Viewing slices of discriminator values through the
image (see figure 3) allows regions of high-𝑍 material to be identified visually. This gives a degree
of information about the locations and morphologies of objects stored in the drum. However, it is
vulnerable to a vertical smearing effect inherent in the PoCA reconstruction, and without an object
of known material for comparison, it is difficult to determine the specific materials of objects ‘by
eye’. Additionally, without any way to automatically remove background materials such as the steel
drum and concrete matrix, the 3D image must be viewed in slices to determine the locations of
stored objects.

By default, the binned clustering algorithm only takes into account the median of the log(𝑚𝑖 𝑗)
distribution in each voxel. To test the possibility that additional material information is encoded in
the shape of the log(𝑚𝑖 𝑗) value distribution, variables capturing the shape were used to train MVA
classifiers. These classifiers are then used to separate the regions of the image corresponding to
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Figure 3. 𝑥𝑦 (left) and 𝑥𝑧 (right) slices from binned clustering output images of waste drums containing
10 cm side length cubes of uranium (top) and lead (bottom). Exposure time = 10 days, 𝑛 = 5. The smearing
effect along the 𝑧 axis is due to uncertainty in the scattering vertex 𝑧 coordinate for tracks with small scattering
angles. Note that the plotted discriminator values have been subtracted from 12 for visual clarity.

objects stored in the drum from the concrete matrix. Subsequently the classifiers are used to assign
a material to each identified object.

2.2 System configuration

All simulations were performed using CRESTA [13], a cosmic ray simulation platform built on
the Geant4 [14] particle physics toolkit and the CRY [15] cosmic ray library. Within CRESTA a
MST detector system comprising two particle detector modules above and below a waste drum was
simulated (see figure 4). This represents a ‘generic’ MST detector system, designed for imaging
a 1 m waste drum. The detector modules are 2 m by 2 m and each consists of two layers of resistive
plate chambers (RPCs), polystyrene scintillator triggers and three layers of drift chambers. The
RPCs and drift chambers have spatial resolutions of ∼ 350 μm and ∼ 2 mm respectively. The
detectors are arranged in alternating 𝑥 and 𝑦 layers, allowing 3D muon hits to be recorded and the
incoming and outgoing tracks reconstructed.

– 5 –
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Figure 4. MST detector system simulated in CRESTA: detector modules above and below a waste drum, in
which objects can be placed. The detector modules are approximately 2 × 2 m.

The waste drum is made of steel (approx. 91% iron, 9% carbon; element isotopes in natural
abundances). It is approximately 100 cm in length and 30 cm in radius (see figure 5 for precise
dimensions), and is filled with homogeneous concrete of density 2.3 g cm−3.

Figure 5. The simulated concrete-filled steel nuclear waste drum used in CRESTA, with its dimensions.

3 Multivariate analysis

3.1 MVAs and muon tomography

Frazão et al. [3] used MVA classifiers trained on simulated MST data to discriminate between waste
drums containing lead and uranium blocks. This method can be thought of in a ‘global’ sense,
distinguishing between two categories of waste drum but not analysing the specific drum contents
in terms of bodies encased in the concrete. Our approach by contrast is ‘local’, as we are able
to produce localised material information down to the scale of single 1 cm voxels. This approach
requires longer exposure times (of the order of several days rather than hours) but gives more

– 6 –
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detailed material information. This allows for the possibility of combining these two techniques. A
user could use the former method and a short exposure to identify drums likely to contain high-𝑍
material, then subsequently apply our method and a longer exposure to the flagged drums to identify
the stored objects and their materials.

Our MVA classifiers were built, trained and analysed using TMVA [16], a ROOT [17]-integrated
machine learning platform. Our set of variables used as input to the MVA classifiers are obtained
via the binned clustering algorithm (see section 2.1). The algorithm calculates a set of metric values
for each voxel, with each value corresponding to a pair of muon scattering vertices. By default, the
algorithm uses the median of the distribution of log(𝑚𝑖 𝑗) values only as the discriminator for each
voxel. We build on this by first binning the log(𝑚𝑖 𝑗) values into 28 bins (see figure 6), calculating
the normalised bin counts, and passing the counts to the MVA classifiers as the input variables
(figure 7) for that voxel. This approach allows more of the shape of the distribution of metric values
to be captured, enhancing the information available to the classifiers.

Figure 6. Comparison of distributions of log(metric) values for a voxel corresponding to uranium (left) and
concrete (right). The median of each distribution is used as the discriminator in binned clustering algorithm
images such as figure 3. The normalised bin counts are used as the MVA input variables.

TMVA allows multiple MVA methods to be trained simultaneously and their efficacy compared.
The performance of a binary MVA classifier can be quantified through a Receiver Operating
Characteristic (ROC) curve: a plot of the true positive rate (also called sensitivity) against the false
positive rate for different cuts on the classifier response for the test sample. The Area Under the
Curve (AUC) is a standard measure of the classifier’s discriminating power. AUC = 1 indicates
a perfect classifier whereas an AUC = 0.5 would indicate the classifier performs no better than
random classification.

Applying the classifier to the training datasets and comparing the resulting AUC for a range
of MVA methods (figure 8) shows that the Gradient-Boosted Decision Tree (BDTG) method is the
most suitable, with AUC = 0.811. The Multi-Layer Perceptron (MLP) and Support Vector Machine
(SVM) methods, which overlap in figure 8, have AUCs of 0.808 and 0.804 respectively. For this
reason the BDTG method is used hereafter as the default MVA method.
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Figure 7. Example distributions of some of the input variables used to train the MVA classifiers, here
specifically a binary uranium-lead classifier. The variables are the normalised bin counts (see figure 6) of
the log(𝑚𝑖 𝑗 ) values calculated by the binned clustering MST algorithm. The signal set (blue) are voxels in a
20 cm cube of uranium, and the background set (red) an equivalent cube of lead.

Figure 8. ROC curves showing discriminating power for several TMVA methods when applied to the
described binned clustering algorithm variables, for distinguishing voxels in 20 cm cubes of uranium and lead.
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3.2 Training MVA classifiers

The MVAs were trained on a number of simulated MST muon track data corresponding to a 10 day
exposure of four different waste drums: an ‘empty’ drum containing only concrete, and three drums
containing 20 cm side length cubes (see figure 9) of iron, lead and uranium, in the centre of the
drum and aligned with its central axis. Only the voxels in the cube (or the equivalent volume for the
homogeneous empty drum) were passed to the classifier. The binned cluster algorithm’s 𝑛 parameter
(see section 2.1) was set to 20. The dataset is split into equally sized ‘training’ and ‘testing’ sets;
the MVA is trained on the former then applied to the latter as an overtraining check. For a binary
classifier, one dataset of voxel variables is designated as ‘signal’ and the other ‘background’, whereas
a non-binary classifier is passed a single signal dataset and several background datasets. In each
case, the classifier attempts to distinguish signal voxels from background(s) voxels, such that when
applied to a new voxel it will be classified correctly as often as is possible from the provided variables
and the classifier’s discriminating power. The non-binary classifiers are trained to distinguish the
signal set from all the provided backgrounds (i.e. one-vs-all classification). TMVA calculates an
optimum cut value on the classifier response, with a response above the cut being considered ‘signal-
like’ and below ‘background-like’. The optimum cut corresponds to the point at which the signal
efficiency is equal to the background rejection. On the ROC curve, this corresponds to the point
with the maximum Youden index [18], defined as signal efficiency + background rejection − 1; i.e.
the length of the vertical line between the ROC curve and the 45◦ line connecting the curve’s ends.

Figure 9. Example simulated geometry used for MVA training: 20 cm side length uranium cube, in the
centre of the waste drum.

To check for overtraining, TMVA’s standard check was used: the training signal and background
datasets of voxels are both randomly split into two equal groups, with one being used to train the
classifier and the other reserved for testing. The trained classifier is then applied to the test set. The
classifier output distributions for the training and test sets are then directly compared (see figure 10),
with a close match between the distributions indicating a low degree of overtraining. A Kolmogorov-
Smirnov test is also performed to quantify the similarity of the distributions. In our case, the
distributions of the test and training MVA outputs are a close match visually. The Kolmogorov-
Smirnov test value is low however, indicating some degree of overtraining has taken place.

3.3 Momentum information

To determine the importance of momentum information for material classification, two alternative
approaches to the muon momentum were investigated in addition to the 50% Gaussian smeared
truth momentum described in 2.1. These were using the Monte Carlo truth momentum itself,

– 9 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
5
0
0
7

Figure 10. TMVA overtraining check plot for the uranium-lead binary MVA classifier. The MVA output
distributions for the signal and background training sets are overlaid with the output distributions for the test
sets for comparison and a Kolmogorov-Smirnov test is performed.

with no smearing, and fixing the measured muon momentum at a constant value of 3 GeV/c, i.e.
removing momentum information entirely. A comparison of binned clustering algorithm output
images of a drum containing 15 cm cubes of uranium, lead and iron for the different approaches is
shown in figure 11. Using the Monte Carlo truth momentum results in a slightly sharper image with
less variation in the concrete background, whereas using fixed momentum significantly reduces
the quality of the image with the iron cube in particular difficult to distinguish from the concrete
background.

Figure 11. 𝑥𝑦 slices from binned clustering algorithm output images (with the algorithm’s discriminator
value subtracted from 12) of a waste drum containing 15 cm side length cubes of uranium, lead and iron,
with three different muon momentum approaches: using the Monte Carlo truth momentum (left), applying
a 50% Gaussian smear to the truth momentum (centre), and removing momentum information entirely by
fixing it at a constant value (right). Exposure time = 10 days, 𝑛 = 5.
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To quantify the effect on material discrimination, binary uranium-lead MVA classifiers trained
as described in section 3.2 but with samples obtained using the three different momentum approaches
were used to create ROC curves for each scenario (figure 12). Comparing the AUC for each case
shows that smearing the momentum slightly reduces the discriminating power of the classifier,
with AUC = 0.852 for the truth momentum and AUC = 0.811 for the 50% smeared momentum.
The fixed momentum classifier has significantly worse performance with AUC = 0.631. The
implication is that momentum information is important for this ‘local’ i.e. voxel-scale approach to
material discrimination, but that a smeared momentum approach gives comparable performance to
the idealised Monte Carlo truth.

Figure 12. Comparison of ROC curves and their AUCs for the three momentum approaches (Monte Carlo
truth momentum, 50% Gaussian smeared truth momentum, and fixed momentum). The MVA classifier
trained to discriminate uranium and lead voxels from samples taken from drums containing 20 cm cubes,
with exposure time 10 days. Smearing the momentum reduces the discriminating power by a small degree,
removing momentum information greatly reduces discriminating power.

4 Identifying stored bodies

4.1 Removal of concrete background

It is necessary to attempt to remove the voxels corresponding to the concrete background and steel
shell from the binned clustering algorithm output image. The remaining voxels, corresponding to
stored objects, can then be sorted into distinct clusters using the algorithm described in section 4.2.
The non-binary concrete classifier’s training outputs and ROC curves are shown in figure 13.
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Figure 13. MVA training outputs (top) and ROC curves (bottom) for concrete vs iron/lead/uranium non-
binary classifier. The optimum cut (blue) corresponds to the point at which signal efficiency is equal to
background rejection.

As the dimensions of the drum are known, the steel outer shell voxels can be removed trivially
thorough a cylindrical spatial cut on the image. Subsequently an MVA classifier trained as described
in section 3, designating the dataset of concrete voxels as ‘signal’ and the other materials as
‘backgrounds’, is applied to the remaining voxels to filter out the concrete voxels. As the classifier
is not perfect, some voxels that correspond to concrete in the original simulated geometry remain
in the filtered image. The problem is partially mitigated by applying a simple filtering algorithm
to remove ‘isolated’ voxels from the image. Each remaining voxel has its 6 nearest neighbour
voxels checked; if they are all empty, the voxel is removed from the image. figure 14 illustrates the
result of applying this process to a simulated geometry of three 15 cm cubes. The removed voxels
are coloured white in the images; the remaining voxels are black. To test the performance of the
nearest neighbour filtering method, the false positive and false negative rates were calculated for
this example. Defining a false positive as voxel that does not correspond to concrete being filtered
out, and a false negative as a voxel that does correspond to concrete passing the filter, the false
positive rate was 0.014+0.008

−0.005 and the false negative rate was 0.497 ± 0.008. The low false positive
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rate indicates that very few non-concrete voxels are being incorrectly filtered out. The high false
negative rate however indicates that a large number of concrete voxels remain in the final image;
this corresponds to the smearing in the 𝑧 direction of objects in the drum visible in figure 3.

Figure 14. Illustrative example of MVA-filtering algorithm applied to a simulated geometry of a drum
containing 15 cm cubes of uranium, lead and iron. Voxels passing the MVA filtering process described above
are coloured black.

4.2 Clustering

Subsequently these identified and separated ‘object’ voxels need to be grouped into individual
clusters, each corresponding to a body stored in the drum. This will allow material information
to be calculated by applying MVA classifiers to each identified body. The clustering is achieved
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through the widely used 𝑘-means clustering algorithm, which in its simplest form operates as
follows:

• Choose a value for the number of clusters, 𝑘 .

• Pick 𝑘 randomly selected data points to be the initial cluster centroids.

• For each data point, calculate the Euclidean distance (in geometric space) to each of the
centroids and assign the point to the cluster with the closest centroid.

• Calculate new centroids as the new centres of the clusters.

• Repeat until the centroid locations converge.

Though this algorithm is fast and easy to implement, it requires the number of clusters 𝑘 to be
known in advance and used as an input. One solution is to run the algorithm multiple times with
range of 𝑘 values as input, and calculate some figure of merit of the clustering output for each.
A commonly used figure of merit for clustering algorithms is the Dunn index [19], defined as the
ratio between the minimum inter-cluster distance and the maximum intra-cluster distance. A high
Dunn index therefore indicates well-separated and compact clusters. The inter- and intra-cluster
distances can be defined to suit the problem; in our case the inter-cluster distance metric is the
distance between the closest two data points in the two clusters, and the intra-cluster distance metric
is the distance between the two furthest-apart points in a cluster. Defined in this way, the 𝑘 value
that corresponds to the maximum Dunn index will represent the most natural choice for 𝑘 . In most
cases this will correspond to the number of bodies stored in the waste drum. In some cases the
algorithm can under-estimate 𝑘 if e.g. two objects are in contact or very close together.

In practise, the simple 𝑘-means algorithm often produces poor clustering solutions if the
randomly chosen initial centroids are too close together. This problem is avoided by choosing the
first centroid only from a uniform distribution and the subsequent 𝑘 −1 centroids from a distribution
weighted by the squared distances of the data points from the already chosen centroid(s). This form
of the algorithm is often referred to as ‘𝑘-means++’ [20]. Figure 15 shows the result of applying
the 𝑘-means++ algorithm to a drum containing 15 cm cubes of iron, lead and uranium.

This algorithm occasionally fails when applied to MVA-filtered binned clustering images such
as figure 14, as the ‘noise’ voxels that do not correspond to a stored object can be treated as a
new superfluous cluster. These ‘fake’ clusters are much more sparse than clusters corresponding to
stored objects. This allows the problem to be mitigated by defining a cluster density and removing
clusters with densities below some cut. We define cluster density as the ratio of the number of voxels
in the cluster to the cube of the mean inter-voxel distance. A density cut of 5 × 10−2 voxel cm−3 is
effective at removing the sparse clusters.

A small percentage of voxels that correspond to concrete in the drum will be incorrectly passed
by the classifier and included in the filtered image. These will be incorporated into one of the
clusters, which could cause an incorrect material decision. These voxels will be outliers in the
cluster as the majority of the cluster voxels will be close to the cluster centroid; thus they can be
filtered out by placing a cut on the distribution of voxel-centroid distances for each cluster. Choosing
the cut so as to remove voxels for which the voxel-centroid distance is greater than one standard
deviation from the mean of this distribution is effective at removing outlier voxels.
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Figure 15. 𝑥𝑦 (left) and 𝑥𝑧 (right) slices of the clustering solution for a simulated waste drum containing
three 15 cm cubes of different materials. The voxels separated by the method described in section 4.1 have
been grouped into three clusters using the k-means++ clustering algorithm.

Finally, a filter is applied to remove approximately the outermost voxel layer (see figure 16)
from the surface of each cluster. This is necessary as in general there will be a degree of smearing
between a stored body and the concrete background, due to scattering vertices from muons passing
close to the object contributing to the algorithm’s metric values (see section 2.1) and hence affecting
the variables that are passed to the MVA classifiers. The filtering is achieved by calculating the
mean of the centroid-voxel distances for each cluster, and removing voxels for which the distance is
greater than the mean.

Figure 16. 𝑥𝑦 (left) and 𝑥𝑧 (right) slices of the clustering solution of figure 15 after filtering the outermost
voxels from each object. Here black indicates voxels removed from the cluster.
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5 Results and analysis

5.1 Applying MVAs to clustered objects

Further MVA classifiers are now applied to the voxels in each identified cluster to obtain material
information for the bodies stored in the drum. Two additional MVA classifiers are trained: a
non-binary classifier that separates iron signal from lead and uranium backgrounds (see figure 17),
and a final binary classifier to discriminate lead and uranium (figure 18). The training ROC AUCs
for these classifiers show that the lead and uranium cases are easily distinguished from iron (as the
AUC values are close to 1), whereas the lead/uranium classifier does not perform as well, due to
the similarity of the materials’ 𝑍 values.

Figure 17. MVA training output and ROC curves for iron/lead/uranium non-binary classifier. The optimum
cut corresponds to the point at which signal efficiency is equal to background rejection.

– 16 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
5
0
0
7

Figure 18. MVA training output and ROC curves for lead/uranium binary classifier. The optimum cut
corresponds to the point at which signal efficiency is equal to background rejection.

Each MVA classifier will produce a single response value for each voxel it is applied to. If
the value falls above the cut (see section 3.2), the voxel will be considered signal-like, and if it
falls below, background-like. Each identified object is a set of voxels; we apply the classifiers to
each voxel to obtain the object’s distributions of response values, then calculate the proportions of
response values that fall above the cuts (i.e. the proportion of the object’s voxels that are signal-like)
to arrive at a single value from each classifier for each object. Figure 19 shows the MVA classifier
response distributions for the three identified objects in the 15 cm cube example simulated geometry.

– 17 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
5
0
0
7

Figure 19. Distributions of responses of MVA classifiers applied to found clusters from a simulated waste
drum containing 15 cm cubes of uranium (object 2), lead (object 1) and iron (object 3). The optimum cuts
for the classifiers correspond to the points at which the signal efficiency is equal to background rejection.

5.2 Obtaining material decisions

Applying the integral method described above to these distributions results in uranium, lead and
iron ‘material scores’ for each object stored in the drum. The uranium and lead material scores are
subsequently multiplied by 1− iron score, i.e. the ‘not-iron’ score. These scores are very effective at
distinguishing objects of different materials once the sizes of the objects are taken into account. The
material scores are intuitively viewed as a pie chart (see figure 20). For the simulated drum contain-
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Figure 20. Material scores for simple geometry of three 15 cm cubes, uranium, lead and iron, aligned with
voxel grid.

ing three 15 cm side length cubes of uranium, lead and iron, each object has the MVA-calculated ma-
terial score that corresponds to the true material as the largest score. The scores for the uranium and
lead blocks are also clearly distinguished from each other. However, this simulation is an idealised
case due to the large size of the objects and their similarity to the 20 cm cube training geometries.

Applying the MVA classifiers to a similar but more challenging geometry of three 10 cm side
length cubes (see figure 21), two effects become apparent. Firstly, the classifiers do not perform as
well i.e. the score corresponding to the true material is not necessarily the largest. For example,
the ‘uranium’ score has reduced from 0.596 ± 0.025 for the 15 cm cube case to 0.221 ± 0.025.
However, the uranium score for the lead cube has also reduced, by a comparable factor. This effect
can be explained by considering the repeated scatterings of muons in a large high-𝑍 object: a larger
object will lead to larger detected muon scattering angles, and hence a smaller binned clustering
metric value (see 2.1). Hence a large lead object can appear more ‘uranium-like’ than a smaller
lead object. The implication is that the size of stored objects must be taken into account to reliably
determine their material composition.
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Figure 21. Material estimate results for simple geometry of three 10 cm cubes, uranium, lead and iron,
aligned with voxel grid.

To quantify the relations between the object size and the material scores, we applied our system
to a series of simulated drums containing spheres of different materials and increasing radii. The
results are shown in figure 22. It is apparent that whilst there is no simple relation between the
material scores and the object volume, objects of different material are clearly distinguished for a
wide range of volumes.

However, these plots can be used empirically to arrive at a single decision material for each
identified stored body in the drum. As the volumes of the clusters (equivalent to the number of
constituent voxels) are known, the plots in figure 22 give the ‘expected’ material scores for a cluster
of that size if the object was composed of one of the three materials. Finally, a material decision is
arrived at by comparing the object’s actual material scores with each set of expected values. The
material with the best match, i.e. the minimal 3D Euclidean norm between the actual and expected
material scores, is selected as the final material decision.

– 20 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
0
5
0
0
7

Figure 22. Relationship between the MVA-calculated material scores and the size of the stored object. Each
simulated geometry contains a single sphere of increasing radii, composed of uranium (top), lead (middle)
or iron (bottom).

This approach was tested on more complex simulated geometries. Figure 23 shows results for
a drum similar to the three-cube example of figure 20, but with objects of irregular size, location
and rotation. In this case the system has accurately identified the correct material for each object.
Despite the uranium block’s low uranium score compared to the equivalent 15 cm cube (figure 20),
the calibration by volume has correctly identified it as uranium.
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Figure 23. Material estimate results for more complex geometry of three objects, uranium, lead and iron, not
aligned with the voxel grid or centred. By calibrating the three material scores against the volume calibration
curves, (figure 22), the correct material has been assigned in each case.

A further example with a larger number of objects is shown in figure 24. This drum contains
five objects (two uranium, two lead, and one iron) of a wider range of shapes, dispersed more evenly
through the drum. However, the system still performs well. The identified clusters are a close match
to the true locations of the stored objects. Both uranium objects are correctly assigned, as is the
iron sphere and one of the lead objects. One lead object, a tube, has been incorrectly identified
as iron. This indicates a limitation of the system when attempting to determine the materials of
non-spherical objects.

5.3 Sensitivity

To establish the system’s sensitivity and false positive rate, we then applied it to a set of randomly
generated waste drum simulations. Each simulation contained three spheres of radius 6 cm, ran-
domly dispersed throughout the drum but constrained to not intersect each other. 100 simulations
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Figure 24. Material estimate results for more complex geometry of five objects of various materials and
shapes, dispersed throughout the drum. Note that the 2D cluster plots are viewed as side-on and bird’s eye
views of the 3D map; this is necessary to view all the clusters as they do not all intersect the central 𝑥𝑦 and
𝑧𝑥 planes. Four of the objects have been assigned the correct material; one lead object has been incorrectly
classified as iron.

were run in total. 50 simulations contained one uranium, one lead and one iron sphere, and the
remaining 50 contained two lead spheres and one iron sphere. A true positive identification of a
uranium object was defined to be an object identified close to the true location of a uranium sphere
that was designated as uranium by the system. Conversely a false positive comprised any assignment
of a uranium decision to an object in a drum not containing uranium. With these criteria, we found
a sensitivity of 0.90+0.07

−0.12, and a false positive rate of 0.12+0.12
−0.07 (95% Clopper-Pearson confidence

intervals).

6 Conclusions

We have demonstrated that machine learning techniques are a powerful tool for enhancing the
information about a waste drum’s contents that can be obtained in a muon scattering tomography
experiment. MVA classifiers trained on variables obtained from the distribution of binned clustering
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algorithm metric values are effective at discriminating materials in waste drums. The concrete
matrix can be distinguished from stored objects of mid- and high-𝑍 material, allowing the voxels
corresponding to the matrix to be removed, and the remaining object voxels sorted into clusters.

Additional material information can be obtained with further MVA classifiers, to discriminate
first mid-𝑍 (e.g. iron) from high-𝑍 (lead, uranium) objects, and then between materials with
similar 𝑍 . The effectiveness of the material discrimination is highly dependent on object size. By
establishing the empirical relation between object size and the MVA classifiers’ material output
scores, a final material decision can be made for each identified stored body in the simulated waste
drum. This has shown to be accurate for a wide range of object sizes, shapes and drum locations.

When tested against a set of simulated drums containing 6 cm radius spheres of different
materials in randomly determined positions, the system performed with a true positive rate of
0.90+0.07

−0.12, and a false positive rate of 0.12+0.12
−0.07, indicating this approach is effective at identifying

uranium objects inside waste drums. The main identified vulnerabilities are objects with large
differences in 𝑍 (e.g. iron and uranium) being very close too each other, and more spatially
extended objects being misidentified, although the latter problem could be mitigated by extending
the object size-based decision method (see figure 22) to account for a wider range of object shapes.
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