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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 

Performance Assessment Methodologies IN Application to Guide the Development of the 

Safety Case. This project is part of the Sixth Framework Programme of the European 

Commission. It brings together 25 organisations from ten European countries and one EC 

Joint Research Centre in order to improve and harmonise methodologies and tools for 

demonstrating the safety of deep geological disposal of long-lived radioactive waste for 

different waste types, repository designs and geological environments. The results will be of 

interest to national waste management organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components (RTDCs) 

and one additional component dealing with knowledge management and dissemination of 

knowledge: 

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 

needed for assessing the safety of deep geological disposal, on the basis of 

comprehensive review of international practice. This work includes the identification of 

any deficiencies in methods and tools.  

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of 

uncertainty during PA and safety case development. Guidance on, and examples of, 

good practice will be provided on the communication and treatment of different types of 

uncertainty, spatial variability, the development of probabilistic safety assessment tools, 

and techniques for sensitivity and uncertainty analysis. 

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 

geological disposal concepts. This work includes the development of PA scenarios, of 

the PA approach to gas migration processes, of the PA approach to radionuclide 

source term modelling, and of safety and performance indicators. 

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 

which quantitative comparisons are made between approaches that rely on simplifying 

assumptions and models, and those that rely on complex models that take into account 

a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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1 Introduction

The PAMINA task 2.1.D–Techniques for Sensitivity and Uncertainty Analysis–compares the rela-
tive advantages and disadvantages of different methods for applying Sensitivity Analysis (SA) to
performance assessment calculations. This report is part of a benchmark study aimed at testing a
wide range of Sensitivity Analysis techniques on test cases. In a previous Milestone Report [11],
we issued the plan for such a benchmark study. In this Milestone Report, we report on the results
on this benchmarks study by analysing nonlinear techniques for SA. In order to gain experience
with the tools and techniques of SA we first apply them to analytical test models, the results of
which are reported in Section 5. As a more application-oriented model, we study a geosphere
transport model in Section 6.
Uncertainty Analysis (UA) and Sensitivity Analysis (SA) form an integral part of gaining knowledge
of computational models used for the analysis and prediction in many parts of engineering and
applied sciences. UA is handled by computing standard statistical indicators (mean, variance)
based on a given sample of corresponding input data and output data. Asides from these standard
indicators, Sensitivity Analysis indicators should provide hints to questions like:

• Which uncertain parameters mostly contribute to the output uncertainty?

• Are there any parameters whose uncertainties have negligible effects on the output?

• Is there a set of uncertain parameters which has a combined effect on the output variability
while the individual influences are not noticeable?

In most practical cases, SA is performed using indicators based on linear regression techniques,
including rank-based techniques. However, for complex models where no linear or monotonous
dependency is apparent, such a SA is not very powerful. Especially, the dependency on higher
order terms cannot be fully explained when using only linear regression techniques.
When the model under inspection is a linear one, variance-based Sensitivity Analysis indicators
yield similar results in terms of information about parameter importance as Pearson Correlation
Coefficients, Partial Correlation Coefficients or Standard Regression Coefficients. Additionally,
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for nonlinear, non-monotonous models those indicators provide information not retrievable from
indicators based on global linear regression techniques.
For our purposes, we distinguish two types of sensitivity indicators, named first order effects (also
called: main effects, Sobol’ indices, correlation ratios, importance measures) which can be used in
a Factor Prioritisation (FP) setting by detecting direct influences from the input parameters to the
output parameter, and total effects which can be used in a Factor Fixing (FF) setting by detecting
indirect influences. In a FP setting most influential parameters are identified for which further
research (for reducing their lack-of-knowledge uncertainty) improves the model significantly, in a
FF setting unessential parameters are identified which may be fixed to a constant value without
changing the overall model behaviour. For further discussion see [14, Section 1.2].

2 Problem formulation

We consider a computational model y = f (x1, . . . ,xk) with k (scalar) input parameters xi and a
(scalar) output y. However, the values of the input parameters are not exactly known. We assume
that this uncertainty can be handled by using random variables Xi of known distributions. Then
the model output is also a random variable Y = f (X1, . . . ,Xk). To determine its properties one
uses the tools of Uncertainty Analysis and Sensitivity Analysis. These tools require realisations
of the input distributions and model evaluations, e.g., to compute the mean as an estimate for the
expected value of Y . We will denote one realisation of a parameter set with (x1, . . . ,xk), multiple
realisations are shown in matrix notation X = (x ji) j=1,...,n,i=1,...,k.

3 Sensitivity Indices

For a short introduction to Sensitivity Analysis, see [1]. We will draw most of our attention to meth-
ods described therein in Section 5.2 (Monte Carlo based methods) which contains a discussion
of regression techniques and in Section 5.3 (Variance decomposition based methods) where the
Sobol’ indices are introduced and methods for their estimation are presented.
For convenience, some details for variance decomposition are mentioned here (cf. [19]). The
variance of Y can be expressed in terms of the conditional variance

V[Y ] = E[V[Y |XI]]+V[E[Y |XI]] (1)

where XI = (Xi)i∈I is a random vector, and I ⊂ {1, . . . ,k} is an index set of “interesting” factors.
E[Y |XI] is the conditional expectation of Y given XI and V[Y |XI] = E[(Y −E[Y |XI])2|XI] is the
conditional variance, respectively. These two are random variables of XI .
The Sensitivity Index (SI) with respect to the index set I is then given by

SI =
V[E[Y |XI]]

V[Y ]
or SI = 1− E[V[Y |XI]]

V[Y ]
.

If the index set contains just one element i ∈ I, the SI is called first order effect or main effect of i.
If I contains all but one index i 6∈ I then STi = 1−SI is the total effect of i. Analogously, the total
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effect of an index set I is defined as ST I = 1− SIC where IC = {1, . . . ,k} \ I is the complement
set of I. The name “total effect” should not distract from the fact that in case of dependent random
vectors the total effect does not include the part of the variance of Y which escapes through the
dependency of XIC on XI .
The Sensitivity Index has the following properties:

• SI ∈ [0,1].

• If SI = 1 then Y is a function of XI .

• If XI and Y are independent then SI = 0.

For the first order and total effects of single factors i the following results hold true:

• If X1, . . . ,Xk are independent then ∑
k
i=1 Si ≤ 1 and ∑

k
i=1 STi ≥ 1.

• If f (x1, . . . ,xk) is an additive function in all of the parameters xi (in particular, if f is linear)
then Si = STi and ∑

k
i=1 Si = 1.

For the derivation of some of the methods presented below, the variance of the conditional expec-
tation of Y satisfies the following limit,

V[E[Y |XI]] = lim
E[ϕ(XI)−E[Y |XI ]]→0

E
[
(EY −ϕ(XI))

2
]

(2)

for a sequence of (square-integrable) functions ϕ : R` →R of XI where ` = card I ≤ k denotes the
number of factors in I (which is the dimension of the random vector XI). Setting ϕ(x) = E[Y |XI =
x] yields equality in (2). This special choice of the function ϕ is a non-parametric regression curve.
With (2) in mind the first order effect Si is the fraction of the variance of Y that is explained by a
functional dependency on Xi alone, while the total effect STi is the fraction of the variance of Y
that is not explained by a functional dependency on all parameters but Xi.

4 Overview of the Tested Algorithms

Some of the methods which we present in the next subsections have not caught much attention
in the current literature. These are “cheap methods” in the sense that the Sensitivity Indices can
be estimated from a given sample of realisations of the input variables and its associated set of
model outputs which were, e.g, already used for Uncertainty Analysis. Hence these methods are
of special value for practitioners when keeping efficiency in mind.
The formula (2) implies that an estimator for the Sensitivity Index with respect to the index set I is
given by

ŜI =
∑

n
j=1(ŷ(xI j)− ȳ)2

∑
n
j=1(y j− ȳ)2 , ȳ =

1
n

n

∑
j=1

y j, (3)
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where ŷ is a model prediction based on the input data from the parameter group I with E[(ŷ−
E[Y |XI])2] small. Clearly, one cannot consider all possible functions for ŷ. Instead, we use dif-
ferent model classes which are “rich” enough to provide a good estimate of E[Y |XI]. If ŷ is con-
structed from a linear regression model then we have already noted that the result of (3) (which
is, in this case, the standard regression coefficient) is not necessarily good in case of non-linear,
non-monotonic output data. We may therefore try a class of locally constant models (Correlation
Ratios), models performing higher-order polynomial model fitting or models using locally linear re-
gression techniques. Other regression techniques, like kernel density estimators, have not been
used in this benchmark.
A different approach to computation of SA requires special sampling schemes. We will briefly
discuss the used methods based upon repetitive model evaluations (Sobol’) or upon a frequency
response setting (FAST). The use of other sampling schemes like winding stairs sampling or alter-
native orthogonal transformations (Walsh-Hadamard) was not within the scope of the benchmark.

4.1 Correlation Ratios: Graphical method extended

One straight-forward method of estimating V[E[Y |Xi]] is to consider E[Y |Xi ∈ Im] where {Im,m =
1, . . . , `} is a partition of the whole input parameter range for Xi into ` subsamples. Then from an
estimate of the conditional variance for y j = f (x j1,x j2, . . . ,x ji, . . . ,x jk), j = 1, . . . ,n we obtain

ȳm =
1

nm
∑

x ji∈Im

y j, nm = card{x ji ∈ Im},

Ŝi = ∑
`
m=1 nm(ȳm− ȳ)2

∑
n
j=1(y j− ȳ)2 (CR-VCE)

where cardA denotes the number of elements in the set A. Figure 1 demonstrates this process
of taking local means.
Alternatively, based on decomposition (1) one can also compute the mean of the conditional
variances instead of estimating the variance of the conditional means,

s2
m =

1
nm−1 ∑

x ji∈Im

(y j− ȳm)2,

Ŝi = 1− (n−1)∑
`
m=1 s2

m
(n− `)∑

n
j=1(y j− ȳ)2 . (CR-ECV)

For the number of subsamples in a partition, [6] suggests ` = b
√

nc. The TU Clausthal implemen-
tations use the upper integer bound, ` = d

√
ne (which we will call “rule of thumb” in the following

text). Hence we can expect ` realisations in each of the ` subsamples. However, the tests per-
formed by R. Bolado and A. Badea, JRC-Petten, for this benchmark exercise suggest that this
choice can be sub-optimal.
Using a higher-dimensional partition, correlation ratio methods are also able to compute higher-
order effects. Unfortunately, for computing the interaction between multiple factors as for total
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Figure 1: Correlation Ratios: Computing the variance of conditional means.

effects this method suffers from the curse of dimensionality: The number of subsamples in a
partition grows with the power of the length of the index set. Moreover, in this situation it is
unclear if there are enough realisations available in each subsample of a high-dimensional space.
With respect to (3), in (CR-VCE) we are using the step function ŷ : x 7→ E[Y |Im], x ∈ Im which can
be rewritten by utilising the characteristic function of Im,

ŷ(x) =
`

∑
m=1

1m(x)E[Y |Im], 1m(x) =

{
1 if x ∈ Im,

0 if x 6∈ Im

For the estimation of Si via Correlation Ratio this yields

n

∑
j=1

(ŷ(xi j)− ȳ)2 =
n

∑
j=1

(
`

∑
m=1

1m(xi j)E[Y |Im]− ȳ

)2

=
`

∑
m=1

nm(E[Y |Im]− ȳ)2.

In the original publication [9] the Correlation Ratio yηxi
is defined as the square root of the Sen-

sitivity Index.

4.2 Polynomial Fit: If a linear model is not enough

Another cheap approach consists of fitting a polynomial model of the given input data to the given
output data (with hidden error term),

Y = β0 +β1Xi +β2X2
i +β3X3

i + . . .βMXM
i
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Figure 2: Polynomial Fit: Computing the variance for the model-predicted output.

Then we compute the goodness-of-fit

Ŝi =
∑

n
j=1(ŷ|pM(Xi)(x ji)− ȳ)2

∑
n
j=1(y j− ȳ)2 (FIT)

where ŷ|pM(Xi)(·) is the model predicted output from a polynomial model in Xi with maximal power
M. This maximal power should be chosen large enough to capture sudden changes of the output.
However, one has to consider the problem of over-fitting the data. The value in (FIT) already gives
an estimate for the first order Sensitivity Index. Further details can be found in [7]. In Figure 2 the
polynomial fit with M = 10 is applied to the same set of data as in Figure 1.
With respect to (3), the used model ŷ is a polynomial ŷ|pM(Xi)(x). This global polynomial fit clearly
is of limited use when there are discontinuities in the output.
When computing higher-order effects using polynomial regression we have to consider products
of powers of the input factors. A feasible way to handle this mass of monomials is to restrict
the sum of the powers of the individual factors by M (i.e, to prescribe a maximal length of the
associated multi-indices). As an example, the computation of ST 1 for a k = 3 parameter model
with M = 2 uses a polynomial fit of the form

Y = β00 +β10X2 +β01X3 +β20X2
2 +β11X2X3 +β02X2

3 = ∑
|α|≤M

βα
~Xα , ~X = [X2X3].

As the design matrices for the regression obtained by this method get very large we need a least
squares algorithm that can cope with intermediate results which have close-to-singular precision.
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Figure 3: Conditional Linear Fit: Piecewise linear model-predicted output.

4.3 Conditional linear fit

Instead of fitting a polynomial to the data of the whole input parameter space as in Subsection 4.2,
we can perform the model fitting conditioned on some suitable partition as in Subsection 4.1. For
local interpolation purposes, low order polynomials should suffice. In fact, we use linear models,
see Figure 3. Compared to the previous figures, a slightly different function has been used to
create the data. As the local approach allows for jump discontinuities, it also helps in handling
non-continuous output. However, the computational effort of higher-order effects (in particular,
total effects) is of polynomial order in the length of the factor group I.
The TU Clausthal implementation of the conditional linear fit uses a fixed partition size of ` = 5
for first order effects and of ` = 5k−1 for total effects unless otherwise noted. The subsamples are
determined by partitioning the ranked data into equally sized intervals.

4.4 Methods using special input sampling

Asides from the direct computation of the Sensitivity Indices a large amount of algorithms have
been developed that need special sampling schemes. Overviews of the available algorithms can
be found in [13, 16, 14]. These methods offer better estimates compared to the cheap methods.
However, there are some drawbacks and pitfalls which one should be aware of when using these
algorithms. We will report on this in Section 5.
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4.4.1 Ishigami-Homma-Saltelli/Sobol´

These methods use two input samples, the basic sample X = (x ji) j=1,...,n, i=1,...,k and the alter-
native sample X′ = (x′ji) j=1,...,n, i=1,...,k with the associated output from the model evaluations
Y = f (X) = ( f (x j1, . . . ,x jk)) j=1,...,n and Y′ = f (X′) = ( f (x′j1, . . . ,x

′
jk)) j=1,...,n.

For each input factor i, a new sample Xi is created by replacing the ith column of X′ with that
of X. The first order Sensitivity Indices are computed by determining the correlation coefficient
between the model output Yi = ( f (x′j1, . . . ,x

′
j(i−1),x ji,x′j(i+1), . . . ,x

′
jk)) j=1,...,n associated with the

input sample Xi and the basic model output Y, in matrix notation given by

Ŝi = ρ(Yi,Y) =
(Yi− Ȳi)T(Y− Ȳ)√

(Yi− Ȳi)T(Yi− Ȳi)
√

(Y− Ȳ)T(Y− Ȳ)
. (IHS)

There are many variants of this formula in use which exploit that the output variables Y , Y ′ and Yi
have the same expectation. To obtain total effects, we compute the correlation coefficient between
the modified model output Yi and the output Y′ from the alternative sample, ŜTi = 1−ρ(Yi,Y′).
The total number of model evaluations is given by n(k+2) and provides us with first order effects
and total effects. If there are dependencies between the input data then the row insertion has to
take marginal probabilities into account.
For the Sobol´ method, a special quasi-random sampling scheme named LPτ is used as input
sample generator which has favourite convergence properties for Monte-Carlo integration com-
pared to simple random sampling. There are further constraints1 on the basic sample size and
on the maximal number of parameters when using LPτ .
These methods have the drawback that they may produce negative values or, for total effects,
values larger than 1. These are meaningless values as fractions of variance are estimated.

4.4.2 Fourier Amplitude Sensitivity Test/Random Balance Design

For Fourier Amplitude Sensitivity Tests (FAST) the parameter realisations are chosen along a
search curve with a special frequency behaviour. This introduces an artificial time-scale via the
placement of the realisations in the sample. A common choice for this sample is

x ji = Gωi(s j + ri), ri ∈ [0,1], s j = j/n, i = 1, . . . ,k, j = 1, . . . ,n,

Gω : R→ [0,1], s 7→ 1/π arccos(cos(2πωs))
(4)

where ri is a random shift parameter and ωi ∈ N is an integer frequency assigned to the ith input
factor. The frequency selection is handled by a special algorithm [3, 17, 4] to avoid frequency
interference. As a vital constraint all the frequencies including higher harmonics2 up to a given
maximum M have to stay below the Nyquist frequency, M ∑ωi < bn

2c. For small sets of param-
eters the choice ωi = ω

i−1
0 also works well. In this case, the basic frequency ω0 controls the

precision of the algorithm. Moreover, this frequency selection scheme also allows for the compu-
tation of higher order effects and total effects, see below.

1Due to number-theoretical reasons the performance is best for power-of-two sample sizes.
2The maximal harmonic M is also called interference factor.
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Figure 4: FAST: Prescribed frequencies in the inputs, resonances in the output.

Note that with (4) the generated sample is quasi-uniformly [0,1] distributed. If other distributions
are needed then the sample has to be modified by suitable transformations, e.g., via inverse
cumulative distribution functions. To keep this presentation short, we only consider uniform [0,1]
input distributions and therefore need no parameter transformations to other distribution types.
After the frequencies are assigned to all input factors, the output is analysed for resonances using
a Fast Fourier Transformation, see Figure 4 for an illustration and also Section 5.1 for further
details on this particular example. If the complex discrete Fourier coefficients of Y = (y j) j=1,...,n
are given by

cm =
n

∑
j=1

y jζ
( j−1)m
n , ζn = e−

2πi
n , m = 0, . . . ,n−1, (5)

then the part of the output attributed to the frequency ωi (and hence to the input factor i) is found
in the set {cmωi|m = 1, . . . ,M} where the maximal higher harmonic M is usually 4 or 6. The
fraction of the variance attributed to the frequency ωi (and hence to the input factor i) is given by

Ŝi = 2
∑

M
m=1 |cmωi|2

∑m6=0 |cm|2
. (FAST)

However, if the output depends non-continuously on input parameters then the quadratic conver-
gence properties of the series in (FAST) are lost and higher values of M are required.
Analogously to the cheap methods the formula can be derived from (3) by using a model prediction
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based on the frequency ωi giving a regression depending on the sampling sequence (s j),

Ŝi =
∑

n
j=1(ŷ|ωi(s j)− ȳ)2

∑
n
j=1(y j− ȳ)2 , ŷ|ω(s) =

1
n

(
c0 +2

M

∑
m=1

Re
(
cmωe2πimωs)) , ȳ = 1

nc0.

The application of Parseval’s Theorem then yields (FAST).
To compute total effects with FAST we use the frequency scheme ωi = ω

i−1
0 where the basic

frequency ω0 = 2M + 1 is given by the maximal harmonic. Each frequency ω ≤ M ∑
k−1
`=0 ω`

0 =
1
2(ωk

0 −1) in the Fourier spectrum of the output Y can be uniquely decomposed into

ω =
k

∑
i=1

αi(ω)ω i−1
0 , αi(ω) ∈ {−M,1−M, . . . ,−1,0,1, . . . ,M−1,M}.

If αi(ω) 6= 0 then ω contributes to the total effect of input factor i. Hence to compute this value
we can use two different approaches

ŜTi = 2
∑αi(ω)6=0 |cω |2

∑m6=0 |cm|2
, ŜTi = 1−2

∑αi(ω)=0 |cω |2

∑m6=0 |cm|2
, ω ∈

{
1, . . . ,

1
2
(ωk

0 −1)
}

.

For computing higher order effects the combined zero patterns of the αi(ω) can be exploited.
In a different frequency selection scheme named “Extended FAST” (EFAST) a factor i of interest
is assigned to a relative large frequency ωi � 1 and all others are assigned to low frequencies
(say, ω j 6=i = 1). EFAST can be used to compute total effects as all frequencies below ω0 =
ωi−M ∑ j 6=i ω j do not contribute to the variance from factor i up to the Mth order. Hence

ŜTi = 1−2
∑

ω0−1
m=1 |cmωi|2

∑m6=0 |cm|2
(EFAST)

Clearly, a new sample is needed for each of the factors. But this set-up also allows for the
computation of the first order effect Si via (FAST). Moreover, is has a smaller memory footprint
compared to the full resolution FAST described above.
The Random Balance Design (RBD) [20] uses only the frequency ω = 1 and generates a one-
dimensional sample U with realisations u j = G1(s j) where s = (s j) j=1,...,n is equidistantly spaced
in [0,1]. Then k random permutations πi : {1, . . . ,n}→ {1, . . . ,n} are generated, and Xi = πi(U)
is a sample for the ith input parameter. To find the first order Sensitivity Indices for the ith factor,
the output Y = f (X) = f (X1, . . . ,Xk) is sorted with respect to the inverse of the ith permutation,
π
−1
i (Y), and then analysed via a Fourier transformation using (5) with y j replaced by π

−1
i (Y) j

and (FAST). This method can only estimate first order effects. Higher order effects can be esti-
mated by introducing groups of different frequencies.

4.5 Effective Algorithm: Combining given data with Fourier amplitude

We can modify the idea behind RBD so that it can be applied to given data: Instead of generating
random permutations, we construct permutations πi from the columns Xi of the given data matrix
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X such that each πi(Xi) has a zig-zag-like shape and therefore has a power spectrum where
the frequency ω = 1 is predominant. These permutations are obtained by sorting and shuffling
the input data. In particular, let x = (x j) j=1,...,n be a vector of realisations of the random variable
Xi. To keep the notation short, we drop the dependency on i. We order x = (x j) increasingly and
obtain an ordered vector (x( j)) with x(1) ≤ x(2) ≤ ·· · ≤ x(n). Now, taking all odd indices from (x( j))
in increasing order followed by all even indices in decreasing order gives us a vector (x[ j]) with

x[ j] =

{
x(2 j−1), j ≤ n+1

2 ,

x(2(n+1− j)), j > n+1
2 ,

j = 1,2, . . . ,n

that satisfies

x[ j] ≤ x[ j+1] if j ≤ n+1
2 , x[ j] ≥ x[ j+1] if j > n+1

2 .

This shows that the entries in the vector (x[ j]) are in zig-zag order. There exists a permutation πi
with πi((x j)) = (x[ j]). As in RBD, this permutation is also applied to the output πi(Y). The Fourier
transformation of the permuted output is analysed for frequency responses. Further details can
be found in [10].
This approach is called “Effective Algorithm” for the computation of SI (EASI). It has been devel-
oped in the course of the PAMINA project. This benchmarking exercise is also used to test its
performance.

5 The analytical benchmark cases

A first round of PA benchmark studies were performed by the members of the PAMINA 2.1.D work
group, see Appendix B. In order to unify the results and to draw more attention to the nonlinear
SA indicators we asked in a second simulation round for selected benchmarks cases with a pre-
scribed setting. This setting consists of 25 runs at sample sizes of 100, 300, 1000, 3000, and
10000, computing mean, variance, R2, R2∗, and first and total order effects (where available). The
choice of the SI algorithms was left to the participants of this second round. Contributions were re-
ceived from Facilia (Sweden), GRS Cologne (Germany), JRC Petten (The Netherlands), and TU
Clausthal (Germany). In the following we sometimes mark the contributions of these participants
with the abbreviations FCL, GRS, JRC, and TUC, respectively.
Most of the following graphics are shown in form of box plots derived from the available 25 runs
per sample size. The box plots show the lower and the upper quartile, the median value is marked
with a dot. The whiskers in the plots are lines illustrating the data range. Outliers are detected
using three-times the inter-quartile range.

5.1 Ishigami function: A model with three input parameters and higher
order effects

The Ishigami test function is a three-parameter model. It is in so far interesting as the second
and third input factors have a Pearson Correlation Coefficient of zero. A variance-based SA
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retrieves a 44% first order effect for the second input factor, but the third input factor shows no first
order effect. Only when estimating total effects, the third factor is attributed to 24% of the output
variance.
The Ishigami function is given by

Y = sinX1 +7sin2 X2 +0.1X4
3 sinX1

where Xi ∼U(−π,π) are uniformly distributed in [−π,π]. The values of R2 ≈ R2∗ ≈ 20% im-
ply that the results from a standard or rank-transformed linear regression are not very powerful.
Hence we have to look into nonlinear SA methods.
Figure 4 displays inputs and outputs from this model prepared for the FAST method. From the
upper graphics showing the input we see that ω3 = 1, ω2 = 11 (by counting the peaks), and
ω1 = 112 = 121. Note that the scatter-plot of the ω1 input data shows Moiré-patterns which
indicates that the sampling size, n = 2000 (Nyquist frequency 1000), is small compared to the
maximal frequency in use 5(1+11+121) = 665. Considering the model output in the center of
Figure 4, we find a periodic behaviour which is not directly related to the input frequencies. The
power spectrum of the output in the lower part of the figure shows more details. First order effects
are coloured blue, second order effects green and third order effects are coloured red. We find
noticeable first order effects for frequencies 44 (x4

2), 121 (x1), and 363 (x3
1). Second order effects

group around the first order effects of x1, for frequencies 119 and 123 (x1x2
3), 117 and 125 (x1x4

3),
361 and 365 (x3

1x2
3). A well-equipped eye might also spot frequencies 115 and 127 (x1x6

3), but as
the maximal harmonic is M = 5 this part of the variance is mis-classified as third order effect.
As x2 enters as fourth power into the model and x3 enters the model only indirectly in combination
with x1, their influences are not detected by linear regression techniques.
Let us now consider the performance of different algorithms for this example. Figures 5, 6 show
the results of the first order effects for x1 and x2, respectively. Nine different algorithms were used.
The TUC implementation of the FAST method errs on too few realisations for sizes 100 and 300,
EFAST only for sample size 100. For a FAST analysis of a k = 3 parameter model with a maximal
harmonic M = 3 the TUC implementation needs at least 2M(1+(2M+1)+ · · ·+(2M+1)k−1) =
6 · (1+7+49) = 342 realisations, for EFAST 2kM(2M +1) = 126 realisations.
The first five algorithms for each sample size are cheap methods working on the same data set
generated with simple random sampling. Their performance is nearly the same. The indicators
generated via the correlation ratio method which uses the mean of conditional variances (ECV)
differ from those generated by calculating the variance of the conditional mean (VCE).
The Ishigami-Homma-Saltelli (IHS) algorithm seems to be the only algorithm which produces
unbiased estimates. But the sample size n is only the basic sample size for use in the IHS method
so that a total of (3 + 2)n = 5n model evaluations are needed. However, there is no explanation
for the wide variance compared to the cheap methods when estimating S1. An overview of the
performance of the different IHS implementations is found in Fig. 7. The TUC version uses a
formula [18] that reduces the error introduced via cancellation, hence the true values should be
better approximated. However, this theoretical result does not become apparent in the figure.
The behaviour of the IHS algorithm changes drastically when using Sobol’s LPτ sequence as
pseudo random number source, see Figure 11. Then even for small sample sizes good estimates
are computed. Here, the basic sample size is rounded to the next power of 2.
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Figure 5: TUC results – Box plots for S1.

100 300 1k 3k 10k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

ct
io

n 
of

 V
ar

ia
nc

e

Sample Sizes

Ishigami S
2
 algorithm comparison

 

 

EASI
FIT
CLM
VCE
ECV
RBD
IHS
FAST
EFAST

Figure 6: TUC results – Box plots for S2.
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Figure 7: Ishigami-Homma-Saltelli algorithm comparison.

The RBD method –although using an artificially generated sample– seems to have no better prop-
erties than the cheap methods, see also Figure 9 where all Fourier-based methods are compared.
A comparison of correlation ratio implementations from TUC, GRS-Cologne and JRC-Petten for
all parameters is found in Figure 8. Note that the different correlation ratio implementations use
simple random sampling (ECV,VCE,SRS,CR2P,CR,CP5S), Latin hypercube sampling (LHS), and
Latin hypercube sampling with the selection of the conditional mean in each subinterval (LHS-
M). However, the use of different input sampling schemes does not produce significantly different
results. The CR2P, CR and CP5S methods study different subsample sizes: CR2P uses a two-
interval partition, while CR5S requests a partition which is constructed in such way that every
subsample contains five realisations, and CR uses a subsample size resembling the rule-of-thumb
` = d

√
ne. Here, the subsample-size-five setting overestimates the true values while the two-

intervals setting produces an underestimation, all other estimators produce consistent results.
For S3, the estimation of true zero values via CR methods is also difficult, only ECV and CR2P
produce unbiased results.
If FAST methods are available then they produce exact estimates for moderately-sized samples.
For the computation of S2 via EFAST(TUC) strange things happen: The range of the computed
estimates is not reduced by increasing the sample size. Maybe there are some resonances inter-
nal to the model that react to joint input frequencies ω1 = ω3 = 1. Figure 9 shows the comparison
of Fourier-based methods from TUC and Facilia. Facilia’s implementation of EFAST uses a simple
frequency selection for sample size 100, hence now the same-sized box plot appears as for the
TUC implementation with sample sizes larger or equal to 300. For larger sample sizes, the Facilia
version of EFAST uses a different frequency selection scheme utilising different small frequencies
and produces much better results which are on par with FAST.
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Figure 8: Correlation Ratio methods for the Ishigami function.
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Figure 9: Fourier-based methods for the Ishigami function.

The results for the total effects of x3 are presented in Figure 10. The number of available al-
gorithms for the computation of total effects is smaller than the number of algorithms for the
computation of main effects. The cheap estimators seem to be biased but consistent, IHS is
unbiased but has large variations: even negative estimates are generated for sample size 100
(which are clipped out from the graphics). The FAST methods produce estimates that are nearly
uninfluenced by the random frequency shift, there are only little differences in the performance of
the different implementations.
For the Sobol’ method TUC used the next power of 2 for the sample size which produces good
estimates, while Facilia used the given value as basic sample size which produces less accurate
results for small sample sizes, see Figure 11. As the Sobol’ method uses a special sampling
scheme there is only one estimate available per sampling size. The figure therefore shows all
main and total effects in one graphics. Note that S2 = ST 2 so that two values are plotted on the
same spot.

5.2 A discontinuous switch example

If a computational model has input parameters that drastically change the output behaviour then
these discontinuities may impose numerical problems for the used SA algorithms. Hence we
analyse the following test function,

Y =

{
X2, if X1 > 1

2
−X2, if X1 ≤ 1

2
, X1,X2 ∼U(0,1).
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Figure 10: Box plots for ST 3.
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Figure 11: First and total effects using Sobol’s method for the Ishigami function.

The expected values are S1 = 3
4 , S2 = 0, ST 1 = 1, ST 2 = 1

4 . As R2 ≈ R2∗ ≈ 56% the results from
a standard or rank-transformed linear regression are only of limited use.
Figure 12 shows the results of the estimation of S1 using the TUC computations. We conclude that
in this case only the conditional linear model (CLM), the correlation ratio methods (VCE, ECV),
the IHS algorithm, and EFAST can cope with the non-linearity, all other algorithms systematically
produce too low estimates. Using the correlation ratio methods, for all but the 3000 sample
size the number of subsamples in the partition given by the rule of thumb is even so that the
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Figure 12: TUC results – Box plots for S1.

discontinuity at x1 = 0.5 is resolved by the associated partition. One sees that the performance
of the CR methods is slightly different for the 3000 sample size: While the estimates for the other
sampling sizes are nearly unbiased, the estimate for the size-3000 sample underestimates the
true value. Figure 16 shows the results of other CR methods. For the computation of S1 via CR
the use of Latin Hypercube sampling schemes is advantageous, but there are no differences in the
results of S2 for varying sampling schemes (SRS,LHS,LHS-M). As already noted in the previous
example the CR estimates based on a subsample size of five realisations or on two intervals
produce inferior results.
Returning to Figure 12 the conditional linear model (CLM) uses a partition with an even number
of intervals, M = 6. Hence this method benefits from the same effect as the CR methods.
The results for the TUC implementations of FAST and EFAST differ considerably. While EFAST
converges slowly FAST remains stubbornly at a low level. This is due to the fact that for the sample
of size 10,000 EFAST uses the maximal harmonic M = 35 and frequency ω = 71 while FAST is
restricted to maximal harmonic M = 8 and frequencies ω1 = 17,ω2 = 1. Other implementations
of Fourier-based methods suffer also from the fixed maximal harmonic M, see Figure 15 which
shows that the algorithms with the same value of M produce equivalent estimates.
Figure 14 shows first and total effects estimated via IHS methods. The variations are large when
compared to other methods. However, unbiased estimates are produced. Compared to these
results from the IHS methods, the Sobol’ algorithm gives almost the correct estimates even for
small sample sizes, cf. Fig. 17. Even a sampling size which is not a power-of-2 produces no
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Figure 13: TUC results – Box plots for ST 2.

eye-catching effects.
For a two-parameter model the total effects are given by STi = 1− S3−i, i = 1,2. Therefore the
explicit calculation of total effects is not necessary. Nevertheless, Figure 13 shows computed total
effects. Again, the polynomial fit and the FAST algorithm with bounded maximal frequency fail to
catch the exact value. Figure 17 shows that the total effects computed by the Sobol’ method are
in good agreement with the theoretical values.

5.3 A linear model with dependent input data

In theory, independent input parameters are required for performing variance-based SA. It is not
clear what happens with the SA algorithms in the presence of dependencies between the input
parameters or to what extend the results can be interpreted. This example highlights some of
the problems encountered when processing dependent data. The function under inspection is
given by the linear model Y = X1 +X2 where the input parameters have a joint probability density
function given by

p(X1,X2) =

{
2 if 0 ≤ X1,X2 ≤ 0.5 or 0.5 ≤ X1,X2 ≤ 1,

0 otherwise.

The expected values are Si = V[E[Y |Xi]]
V[Y ] = 13

14 = 0.9285714 . . . hence STi = 1− S3−i = 1
14 =

0.0714285 . . . , i = 1,2. In a linear model with independent parameters we would expect
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Figure 14: Ishigami-Homma-Saltelli algorithm comparison.
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Figure 15: Fourier-based methods for the Switch example.
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Figure 16: Correlation Ratio methods for the Switch example.
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Figure 17: Sobol’s method for the Switch example.

(a) the sum of all main effects to be 1, and

(b) the total effects to be larger or equal to the main effects.

However, we are not dealing with an independent input parameter setting. Figures 18 and 19
show the results for the Sensitivity Indices S1 and S2. Since the model is symmetric in x1 and
x2 the results should also be the same. This is the case where the methods for calculation of
the Sensitivity Index require no additional information for parameter transformations, i.e., for the
cheap methods. For these, the results show a fair agreement with the expected results, and since
the model is linear the results are already valid for small sample sizes. The problems arise in case
of Sobol’, IHS, RBD, FAST or EFAST methods as the sample generation not only has to satisfy
the needs of a special sampling scheme but also to realise the joint probability. Depending on the
input parameter transformation which may use the marginal distribution p(X1|X2) or p(X2|X1) we
see different results, in this case the results of S2 are definitely wrong. However, with the careful
choice of a parameter transformation one obtains the correct results, as the Facilia implementation
of the IHS method and the GRS-Cologne implementations of the special sampling scheme CR
methods (SRS, LHS, LHS-M) show.
Moreover, the CR methods, IHS and EFAST seem to be consistent, for the rest of the algorithms
a small bias seems to be present since an increase in the sample size does not lead to better
results. Figure 20 shows a selection of CR methods.
The IHS algorithm shows the largest variation. Again, when using the Sobol’ sequence for the
sample generation the quality improves drastically (not shown). For total effects, the cheap meth-
ods produce good estimates. For other methods which already gave bad estimates the “wrong”
parameter transformation is now in effect for ST 1 while ST 2 is estimated correctly (not shown).
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Figure 18: TUC and Facilia results – Box plots for S1.
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Figure 19: TUC and Facilia results – Box plots for S2.
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Figure 20: Correlation Ratio methods for the dependent linear model.

5.4 Sobol’ g function: A model with eight input parameters

Real-world models have many input parameters. Hence a test case where many input parameters
are considered shows if an algorithm is robust enough. A well-studied test function is the non-
monotonic Sobol’ g-function which is given by

Y =
k

∏
i=1

|4Xi−2|+ai

1+ai
, Xi ∼U(0,1) (6)

where k = 8, (ai) = (0,1,4.5,9,99,99,99,99). The first parameter is most influential, the influ-
ence decreases through the rest of the parameters until parameters five to eight become equally
uninfluential. Due to the symmetry in the formula, we have R2 = R2∗ = 0. Hence the results
based on linear regression are of no value for the Sensitivity Analysis.
The results for S1 are reported in Figure 21. A full resolution FAST with k = 12 parameters needs
more than 10,000 realisations so that there are no results available for this particular method.
Instead, we feature a guest appearance of Jansen’s Winding Stairs algorithm. Its results should
be comparable to the IHS method (as both require the same number of model evaluations).
Here, the performance of the Winding Stairs algorithm for S1 is slightly better than the results from
IHS.
The TUC EFAST implementation needs at least 2kM(2M+1)≥ 366, M ≥ 3, realisations to work.
Hence the first two sample sizes allow no EFAST(TUC) analysis. For the other sample sizes, the

PAMINA Sixth Framework programme, June 8, 2009 27



100 300 1k 3k 10k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n 

of
 V

ar
ia

nc
e

Sample Sizes

Sobol g S
1
 algorithm comparison

 

 

EASI
FIT
CLM
VCE
ECV
RBD
IHS
WIND
EFAST

Figure 21: TUC results – Box plots for S1.
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Figure 22: Fourier-based methods for Sobol’ g function.

simple frequency scheme of EFAST(TUC) is not well suited: Again, there is no convergence to
the real value. The performance of other Fourier-based implementations is reported in Figure 22.
The results for S5 are reported in Figure 24. As the fifth parameter is un-influential its Sensi-
tivity Index is close to zero. Note that for the first two sample sizes, EFAST produces an exact
zero as there are not enough realisations available. The cheap methods (asides ECV) and RBD
overestimate the exact value.
Compared to the IHS method that produces good estimates even for small sample sizes, the
Winding Stairs implementation gives the worst estimates of S5 of all tested algorithms.
Nearly all Correlation Ratio methods have problems identifying a close-to-zero Sensitivity Index,
see Figure 25 where S5 is estimated.
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Figure 23: Ishigami-Homma-Saltelli algorithm comparison for Sobol’ g function.
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Figure 24: TUC results – Box plots for S5.

PAMINA Sixth Framework programme, June 8, 2009 29



100 300 1k 3k 10k

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
F

ra
ct

io
n 

of
 V

ar
ia

nc
e

Sample Sizes

Sobol g S
5
 Correlation Ratios

 

 

ECV
VCE
SRS
LHS
LHS−M
CR2P
CR
CR5S

Figure 25: Correlation Ratio methods for Sobol’ g function.

There are noticeable differences in the performance of the different implementations of the IHS
method, see Figure 23. For the Sobol’ method no abnormalities can be spotted (not shown). The
estimates of the Sensitivity Indices for the uninfluential factors 5 to 8 are below 0.2% even for the
basic sample size of 128.

6 The PA case example: The GTM Level-E model

After discussing the analytical in the previous section we now draw our attention to a complex
geosphere transport model (GTM). In various publications (see [20], and [15] for a review), the
PSACOIN Level E code [8] was used both as a benchmark of Monte Carlo simulations and as
a benchmark for Sensitivity Analysis methods. This computational model calculates the radi-
ological dose rate to humans over geological time-scales due to the underground migration of
radionuclides from a hypothetical nuclear waste disposal site through a system of idealised nat-
ural and engineered barriers. The model has a total of 33 parameters, 12 of which are taken
as independent uncertain parameters. The distributions of these uncertainties are either uniform
or log-uniform distributions, the parameters of which have been selected on the basis of expert
judgement. For a description of these uncertain input parameters see Table 1. These values are
taken from [12] where further information including a mathematical description of the GTM Level-
E model is available. The supplied binary model outputs the dose rate in Sv

a which stem from the
radioactive Iodine-129 nuclide and the dose rate from the Neptunium-237 decay chain, moreover
the maximum of the dose rates up to a given point (for I and Np) and the total dose rate per time-
step. The change from the Iodine decay to the Neptunium decay chain introduces non-linearities
into the model which are major obstacles for the Sensitivity Analysis. The Level-E model is also
discussed in [1, Annex 1]. Here only the influence of Iodine is studied, the Neptunium decay chain
is not considered.
The issue of time-dependent results deserves some further attention. The Level-E benchmark
therefore provides sensitivity measures for the following entities,
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Table 1: Uncertain input parameters for GTM Level-E.
Parameter Description Distribution Range Unit

1 T Containment time (source) uniform 102 . . .103 a
2 kI Leach rate for Iodine (source) log-uniform 10−3 . . .10−2 1/a

3 kC Leach rate for Np decay chain (source) log-uniform 10−6 . . .10−5 1/a

4 v1 Water velocity (1st layer) log-uniform 10−3 . . .10−1 m/a

5 l1 Length (1st layer) uniform 100 . . .500 m
6 R1

I Iodine retardation (1st layer) uniform 1 . . .5 −
7 γ1

C Np chain retardation multiplier (1st layer) uniform 3 . . .30 −
8 v2 Water velocity (2nd layer) log-uniform 10−2 . . .10−1 m/a

9 l2 Length (2nd layer) uniform 50 . . .200 m
10 R2

I Iodine retardation (2nd layer) uniform 1 . . .5 −
11 γ2

C Np chain retardation multiplier (2nd layer) uniform 3 . . .30 −
12 W Stream flow rate (biosphere) log-uniform 105 . . .107 m3/a

• Peak of total dose rate,

• Time of occurrence of this peak, and

• Total dose rate (time-dependent, 25 time-steps equally distributed over a logarithmic scale
from 104 to 106 years).

From the experience gained in analysing the analytical test cases, TUC decided to approach
the SA problem by the following two paths. On the one hand, a simple random input sample
of size 75,000×12 was generated and the associated model output was analysed using cheap
methods, allowing for an analysis of 25 samples of size 3000 each. On the other hand, a basic and
an alternative input sample of size 4096× 12 were generated using Sobol’s LPτ sequence and
the samples Xi were added to this input set, yielding an overall input sample size of 57,344×12.
Both methods allow for estimates using smaller sample sizes by picking suitable submatrices.
Facilia computed first order and total effects using IHS and EFAST methods, and first order effects
using RBD and EASI methods. For each method, 25 runs of sample sizes 100, 300 and 1000
were computed.

6.1 Peak of total dose rate

The peak of the total dose rate is not directly available as model output. Two simple approaches
can be used, either by taking the maximum of the total dose (ignoring effects in-between time-
steps) or by taking the maximum of the two peak doses “up to” the latest available time-step
(ignoring effects which occur when Iodine as well as the decay chain both significantly contribute
to the dose). There are cases where both values differ by a factor of over 5000 which suggests
numerical problems with the model. For our analysis we have chosen the data from the first
approach which seems numerically more stable.
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Figure 26: Cheap Sensitivity Analysis of log(peak dose rate).
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Figure 27: Sensitivity Analysis of the peak dose rate, parameters v1, R1
I , and W .

Figure 26 shows the results obtained with cheap methods when analysing the logarithm of the
peak dose rate. The ECV method immediately catches one’s eye as its bias seems to be minimal
compared to the other methods. The added value of a linear fit for the CLM method cannot stand
out against the VCE method.
If the data were not log-transformed then the Sensitivity Analysis would attribute 15% of the vari-
ance to v1 and 21% of variance to W (opposed to 37% and 46% shown in Fig. 26). The un-
transformed data were analysed by Facilia, see Figure 27 for an illustration. Here we see that
the methods using special sampling schemes offer no advantage when compared to the cheap
EASI method. Sometimes their performance is even worse. Moreover, 1000 realisations are not
enough to capture all the effects of the non-linearity in the model. There were small effects visible
for the parameter R1

I in the log-transformed output data, for the untransformed output data this
influence on the output has completely vanished.
Let us now discuss the results obtained from the Sobol’ method. The LPτ sequence was taken
from the GNU Scientific Library, http://www.gnu.org/software/gsl/. Figure 28 shows the results for
different basic sample sizes ranging from 100 to 4096. The linear connection between the points
is deceiving, there are nonlinear effects between the shown sample sizes. The most-influential
parameters W and v1 are identified for small sample sizes. However, to fix a percentage value the
maximal basic sample size, 4096, is still too small.
For total effects see Figure 29, the influence of W and v1 is also detected with a few 100 realisa-
tions. In this example the parameter v2 produces large negative values.
The total effects as computed by Facilia for the parameters v1, R1

I , v2 and W can be found in
Figure 30. As for the Sobol’ method, we encounter problems with the IHS method. The total
effects from the parameter v1 show a large negative outlier for sample size 300, and from the
analysis of the parameters v2 and W we encounter large negative values. The results of EFAST
look more promising: Their variation is small compared to the IHS methods and they seem to
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Figure 28: Sobol’ method for different sampling sizes, main effects.

converge for v1,v2 and W , while the results for R1
I show sudden changes between sample sizes

300 and 1000.

6.2 Time of occurrence of the peak

For the determination of the time of occurrence of the maximal dose rate we are confronted with
the same problem as above, the data are not directly available in the output. For an analysis we
have chosen the time step where the maximal total dose rate is attained. Essentially, this makes
the peak time a discrete random variable which picks one out of the 25 specified time-steps.
Figure 31 shows the Sobol’ indices of the peak rate depending on the sample size. They look
utterly uninformative. Maybe there is a cluster of slightly important variables v1, γ1

C, γ2
C which

makes some sense as the velocity and the retardation multipliers should influence the occurrence
of the peak. The results of the cheap methods highlight this impression. Figure 32 shows the
results for the above-mentioned parameters, indeed showing a subtle, but noticeable influence.
Facilia’s results are displayed in Figure 33. It can be seen that S7 (i.e., the sensitivity of γ1

C)
is positive. The influence of the other two parameters is not so clearly visible for the maximal
sample size 1000 as the IHS method has a large variation compared to the other methods which
hinders the decision if the Sensitivity Index is non-zero.
The peak time covers orders of magnitude, so that one can suggest a logarithmic transformation
of the time scale. The results obtained in this way differ substantially from the untransformed
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Figure 29: Sobol’ method for different sampling sizes, total effects.
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Figure 30: Total effects for the peak dose rate, Facilia’s results.
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Figure 31: Sobol’ method for different sampling sizes, main effects.
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Figure 32: Cheap Sensitivity Analysis of the time of the peak dose rate.
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Figure 33: Sensitivity Analysis of the time of the peak dose rate, parameters v1, γ1
C, and γ2
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Figure 34: Histogram for the time of the peak dose rate.

results. For this, let us first comment on the histogram for the peak time, see Figure 34. We see
two local maxima, one at 50,000 years and the other one at 500,000 years. While the first one is
due to the Iodine decay, the second one is due to the Neptunium decay chain.
Without a logarithmic transformation of the time data only the “late” outliers feel the strength of
the Sensitivity Analysis, hence the SA qualifies the Neptunium decay chain retardation multipliers
which lead to late maxima as influential. With a logarithmic transformation the late maxima move
much more closely to the other maxima and more strength in the SA is given to the “early” max-
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Figure 35: Time-dependent SA of the total dose rate based upon 75,000 realisations.

ima. This is also visible in the results with respect to log-transformed time-data as the following
sensitivities are reported for the layer-1-velocity v1 ≈ 31%, the Iodine retardation R1

I ≈ 7%, and
the Np retardation multipliers γ1

C ≈ 5% and γ2
C ≈ 2% (without illustration). Hence the analysis puts

more emphasis on the “early” Iodine maxima.

6.3 Time-dependent total dose rate

For the peak dose rate we already identified v1 and W as the most influential parameters. Let us
now analyse how these influences change over time.
Figure 35 shows a SA performed with EASI over all of the available 75,000 realisations. For the
rest of the section we will concentrate on the four parameters W , v1, v2 and γ1

C which are most
influential. Note that sum of the Sensitivity Indices is smaller than 1, hence there exist parameter
interactions which are not be captured by first order effects.
The results from the Sobol’ algorithm with a basic sample size of 4096 can be found in Figure 36.
Although the total amount of model runs is 4096 · (k + 2) = 57,344, the results still show some
negative values, hence the precision of the sensitivity estimates is much worse than for those
obtained via the EASI analysis of Figure 35 which uses a just 30% larger sample.
Let us now consider an analysis based upon the 3000 realisations for a cheap method. Figure 37
reports the time-dependent results, showing min and max (dotted lines), median (dashed lines)
and mean (solid lines) from the 25 available runs for the four parameters of interest using a ECV
correlation ratio method with 55 subsamples per partition. The means and the medians are nearly
indistinguishable, and the whole analysis looks sound.
Last, but not least we have a look at the results from Facilia. Results for sample sizes of up to
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Figure 36: Time-dependent main effects of the total dose rate with the Sobol’ method.

1000 realisations are available. We only show the statistics for the Sensitivity Index of parameter
v1 based upon the 25 available runs of samples of 1000 realisations. Figures 38 and 39 show
minimum, maximum, mean and median of the estimates obtained with four different methods.
The Fourier-based methods more or less deliver the same results and parameter ranges are
comparable with those reported in Fig. 37, only IHS performs much worse (remember that IHS
uses a basic sample size of 1000, hence the estimate is based upon 14,000 model evaluations).
For the total dose rate, we do not discuss the results of the estimation of total effects.
As this benchmark is mainly a test for the Sensitivity Analysis benchmark we do not try to interpret
the obtained Sensitivity Indices, and to enlighten the roles of the parameters involved in the model,
which would be the next step in a real world analysis. Such an interpretation would allow us to
find answers to questions of the type we mentioned in the introduction.

7 Conclusions

A lot of insight into the internals of variance-based Sensitivity Analysis has been gained during
the course of this benchmark exercise. We collect and present the lessons learnt in a condensed
form.
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Figure 37: Min, Max, Mean and Median of the main effects for the total dose rate.
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Figure 38: Statistics of the main effects for the total dose rate, EASI and RBD methods.

First of all, we noted that for the standard algorithms the different implementations seem to be
very stable and produce results with only subtle differences. Moreover, results obtained with
cheap methods are very much comparable to those obtained with more sophisticated methods.
However there are some pitfalls which should be kept in mind when performing a variance-based
SA.

• Sobol’/IHS without special Monte-Carlo-integration sequence performs worse than a cheap
method.

• Sobol’ LPτ without a sample size which is a power of 2 is sub-optimal for small sample
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Figure 39: Statistics of the main effects for the total dose rate, EFAST and IHS methods.

sizes.

• For large number of parameters, Sobol’ LPτ needs a large number of realisations.

• Algorithms with fixed maximal harmonic/numbers of subsamples do not capture discontinu-
ities.

• Fourier-based methods and models with periodic output may have unwanted resonances
in the frequencies which render results useless. This may happen for EFAST and small
sample sizes, i.e., if a simple frequency selection scheme is in use.

• For CR methods, if jump discontinuities are not resolved by the choice of the partition
then the results are sub-optimal. Moreover, the influence of the subsample size is not
neglectable.

• Random Balance Design shows no advantages when compared with cheap methods.

• For small Sensitivity Indices nearly all methods show bad convergence properties.

• For EFAST, one has the added value of computing total effects. But if a simulation run
is already available then a cheap method will provide first order effects with no additional
simulation costs.

There are still open problems related to SA and this benchmark exercise.

• Cheap methods can also deal with the estimation of total effects. However, one has to keep
the curse of dimensionality in mind when choosing subsample sizes.

• Cheap methods provide consistent results in situations with dependent input data. It is
unclear how to interpret these results.
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• The good performance of the ECV correlation ratio method (in combination with a rank-
based partition) is currently not well understood.

• The effect of log -transforming the output data on the Sensitivity Indices is not studied in
detail. It is clear that when taking the logarithm of a product there are parts of the variance
which are transferred from higher order effects to main effects.

• These empirically distilled advices are currently not always backed up by theoretical results.
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A A short UA/SA implementation

In the course of the benchmark exercise, TU Clausthal developed a set of MATLAB scripts for
performing UA/SA. This section gives an overview of the available implementations of SA meth-
ods. Some design decisions were made to keep the code simple, e.g., Fourier coefficients are
computed via fft() and not by a direct calculation, partitions are accessed using a find(),
and code snippets were re-used between the different methods.

Name Syntax Description
SUSI Si=susi(x,y) Main effects from given data (Correlation Ratio)
EASI Si=easi(x,y) Main effects from given data (Fourier-based)
FITSI Si=fitsi(x,y) Main effects from given data (polynomial fit)
XFITSI STi=xfitsi(x,y) Total effects from given data (polynomial fit)
CLMSI [Si,STi]=clmsi(x,y) Main and total effects from given data (local fit)
IHSSI [Si,STi]=ihssi(k,n,m,t) Main and total effects (Ishigami-Homma-Saltelli)
SOBOL [Si,STi]=sobol(k,n,m,t) Main and total effects (Sobol’ LPτ )
JANSEN [Si,STi]=jansen(k,n,m,t) Main and total effects (Jansen Winding Stairs)
XFAST [Si,STi]=xfast(k,n,m,t) Main and total effects (FAST)
EFAST [Si,STi]=xfast(k,n,m,t) Main and total effects (EFAST)
RBD Si=rbd(k,n,m,t) Main effects (RBD)

For methods using given data the standard syntax is Si=method(x,y) where x is a matrix
of inputs and y is an output vector. For methods using a special sampling-scheme the standard
syntax is [Si,STi]=method(k,n,model,trafo) where model is the function under
inspection, trafo is the transformation from the unit cube to the input distribution, k is the
number of the model parameters and n is the number of the requested basic sample size. The
internal program flow is given by u=quasirand(n,k); x=trafo(u); y=model(x);.
The transformation offers no additional parameters to model different marginal distributions in
case of dependent data.
Some of the scripts offer further options which are documented in the online help. The archive
containing these scripts is available upon request.

B More benchmark results

In a first series of PA benchmarking we asked the participants of PAMINA 2.1.D for their results
on a number of benchmarking examples, see the Milestone report [11]. A diverse range of avail-
able algorithms was in use, starting from linear regression over variance-based global Sensitivity
Analysis to screening methods and statistical tests for performing Monte-Carlo Filtering.
This appendix gathers the individual contributions of the partners. The following contributions
have been received.

• ANDRA (France): L. Loth, G. Pepin

The results of the analytical and threshold cases have been performed by Andra with the
Alliances computing platform. Sensitivity Analysis indicators based on linear regression
were calculated.
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Table 2: Computational coverage of the first round of benchmark examples
No. Name k Reference ANDRA FACILIA JRC TUC
1 Linear model 3 [13, §2.9.1: 1] X X X X
2 Linear model with interactions 2 [13, §2.9.1: 2] X X
3 Linear Sobol’ function 22 [13, §2.9.1: 3] X X X
4a Monotonic model 2 [13, §2.9.2: 4(a)] X X X X
4b Monotonic model 2 [13, §2.9.2: 4(b)] X X
4c Monotonic model 2 [13, §2.9.2: 4(c)] X X X X
5a Exponential Sobol’ function 6 [13, §2.9.2: 5(a)] X X X
5b Exponential Sobol’ function 20 [13, §2.9.2: 5(b)] X X X
6a Quotient model 2 [13, §2.9.2: 6(a)] X X X X
6b Quotient model 2 [13, §2.9.2: 6(b)] X X X X
7 Sobol’ g function 8 [13, §2.9.3: 7] X X X X
8 ** missing **
9 Ishigami function 3 [13, §2.9.3: 9] X X X
10 Morris function 20 [13, §2.9.3: 10] X X X
11 Bungee jumping man 3 [16, §3.1] X X X X
12a Distance of two spheres 6 [16, §3.5] X X X
12b Distance of two spheres 6 [16, §3.5] X X X
13a Smooth switch 2 [11] X X X
13b Smooth switch 2 [11] X X X

• Facilia (Sweden): P.-A. Ekström

All computational work has been performed with Eikos[5], a simulation toolbox for Sensitivity
Analysis written in MATLAB.

• JRC Petten (The Netherlands): A. Badea

The software in use was R (see http://cran.r-project.org/), a free software environment for
statistical computing and graphics. The functions needed for SA where provided by the
additional package “sensitivity”.

• TUC (Germany): E. Plischke

Algorithms for UA/SA were developed using MATLAB. As an alternative option, the Sim-
Lab 3.0 software (http://sensitivity-analysis.jrc.it/) was to be tested. Unfortunately, major
problems were encountered which prevented its use for the benchmarking.

Table 2 lists the examples and their coverage by the participants. The analysis of some of the
models has been marked as optional for the participants, hence not necessarily all examples are
covered. Table 3 shows the applied UA/SA methods per participant. Some of the methods are
only applied to certain models. Furthermore, note that in this first round the cheap methods are
not covered.
The benchmarks were used to gain knowledge of operating the UA/SA frameworks and to build
confidence in the obtained results.
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Table 3: UA/SA methods used by the participants for the first round
Method ANDRA FACILIA JRC TUC
Mean X X X X
Variance X X X X
Skewness, Kurtosis X
Quartiles, Min/Max X
R2 X X X X
R2∗ X X X
Pearson Correlation Coeff. X X X X
Spearman Correlation Coeff. X X X
Partial Correlation Coeff. X X X X
Partial Rank Correlation Coeff. X X X
Standard Regression Coeff. X X X
Standard Rank Regression Coeff. X X
Smirnov X
Sensitivity Indices (first order)
FAST X X
IHS X X
EASI X
Sensitivity Indices (total order)
FAST/EFAST X X
IHS X X
Morris OAT X X

The descriptions of the individual benchmark results are available in electronic form upon request.
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