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Foreword 

The work presented in this report was developed within the Integrated Project PAMINA: 
Performance Assessment Methodologies IN Application to Guide the Development of the 
Safety Case. This project is part of the Sixth Framework Programme of the European 
Commission. It brings together 25 organisations from ten European countries and one EC 
Joint Research Centre in order to improve and harmonise methodologies and tools for 
demonstrating the safety of deep geological disposal of long-lived radioactive waste for 
different waste types, repository designs and geological environments. The results will be of 
interest to national waste management organisations, regulators and lay stakeholders. 

The work is organised in four Research and Technology Development Components (RTDCs) 
and one additional component dealing with knowledge management and dissemination of 
knowledge: 

- In RTDC 1 the aim is to evaluate the state of the art of methodologies and approaches 
needed for assessing the safety of deep geological disposal, on the basis of 
comprehensive review of international practice. This work includes the identification of 
any deficiencies in methods and tools.  

- In RTDC 2 the aim is to establish a framework and methodology for the treatment of 
uncertainty during PA and safety case development. Guidance on, and examples of, 
good practice will be provided on the communication and treatment of different types of 
uncertainty, spatial variability, the development of probabilistic safety assessment tools, 
and techniques for sensitivity and uncertainty analysis. 

- In RTDC 3 the aim is to develop methodologies and tools for integrated PA for various 
geological disposal concepts. This work includes the development of PA scenarios, of 
the PA approach to gas migration processes, of the PA approach to radionuclide 
source term modelling, and of safety and performance indicators. 

- In RTDC 4 the aim is to conduct several benchmark exercises on specific processes, in 
which quantitative comparisons are made between approaches that rely on simplifying 
assumptions and models, and those that rely on complex models that take into account 
a more complete process conceptualization in space and time. 

The work presented in this report was performed in the scope of RTDC 2. 

All PAMINA reports can be downloaded from http://www.ip-pamina.eu.  
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PART 1 – UPSCALING OF FLOW PARAMETERS 
 
 

Hydraulic conductivity upscaling is a process that transforms a grid of hydraulic 

conductivity defined at the scale of the measurements, into a coarser grid of block 

conductivity tensors amenable for input to a numerical flow simulator. The need for 

upscaling stems from the disparity between the scales at which measurements are taken 

and the scale at which aquifers are discretized for the numerical solution of flow and 

transport.  

The techniques for upscaling range from the simple averaging of the heterogeneous 

values within the block to sophisticated inversions, after the flow equation at the 

measurement scale within an area embedding the block being upscaled. 

All techniques have their own advantages and limitations. The definition of the 

geometry of the grid has been intimately linked to the upscaling problem; promising 

results have been obtained using elastic gridding. The need to perform Monte-Carlo 

analyses, involving many realizations of hydraulic conductivity, has steered the 

development of methods that generate directly the block conductivities in accordance 

with the rules of upscaling, yet conditional to the measurement data. 
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1. Introduction 
An important issue in the numerical simulation of groundwater flow and mass transport 

is the problem of scales. Data are collected at a scale different from (usually smaller 

than) the one used to discretize the aquifer in the numerical model. For instance, field 

sampled hydraulic conductivities (e.g. from core measurements, slug tests or packer 

tests) have measurement supports in the order of centimetres to meters, whereas 

numerical models for groundwater flow require conductivities representative of tens to 

hundreds of meters. 

Since the 1960s different approaches have been used to transform a detailed description 

of the spatial variability of hydraulic conductivity to a coarser description, as sketched 

in Fig.1. 

 

 
Fig. 1.- The upscaling process. (a) Grid at the measurement scale, with possibly millions 
of cells. (b) Grid at the numerical scale on which the flow problem will be solved. 
Computing the conductivity block values in (b) from the corresponding values in (a) is 
the objective of upscaling. 
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We will refer to the scale corresponding to the detailed description in Fig. 1(a) as the 

measurement scale, and to the scale corresponding to the coarser description in Fig. 1(b) 

as the numerical scale. We will use the terms cell conductivity and block (or equivalent) 

conductivity to refer to conductivity values at the measurement and numerical scales 

respectively. We do not discuss the ways in which a grid at the measurement scale can 

be produced from a few sparse measurements, we will just mention that, in general, 

such a grid is filled by some (geo) statistical technique (see for instance Deutsch and 

Journel, 1992). Our starting point is a grid (or several) of conductivity values at the 

measurement scale that is (are) to be “upscaled” to the numerical scale for input to a 

numerical groundwater flow simulator. 

Some authors use the term “effective conductivity” to refer to block conductivities. We 

choose not to use it in this sense to avoid confusion with the specific meaning that 

effective conductivity has in stochastic hydrogeology. The effective conductivity 

defined in stochastic hydrogeology is a property of the random function model adopted 

to describe the spatial variability of conductivity: it is not a block property but a point 

property representing an average process through the ensemble of possible realizations 

at a point. Only under certain random function models, the effective conductivity is 

constant in space and coincident with the block conductivity of an infinite block 

(Matheron, 1967; Dagan, 1979, 1982a,b, 1989). In this respect, effective conductivities 

can be used as a partial check of upscaling techniques. Although effective conductivities 

have been the subject of many studies (e..g. Matheron, 1967; Dagan, 1979, 1982a, 

1989; Gutjahr et al., 1978, Gelhar and Axness, 1983; Poley, 1988; Ababou and Wood, 

1990; Naff 1991; Neuman and Orr, 1993) they are not addressed in this work. The 

interested reader should refer to the work of Neuman and Orr (1993) which presents the 

most general results. This document is organized as follows. First, block conductivity is 

defined, then a review of upscaling methods in a sequence of increasing complexity is 

given. We include only upscaling methods that deal with single-phase saturated 

conductivity. Readers interested in conductivity upscaling for unsaturated flow are 

referred to Yeh et al. (1985), Mantoglou and Gelhar (1987) and Russo (1992). Readers 

interested in multiphase flow are referred to Haldorsen (1986), Muggeridge (1991) and 

Fayers and Hewett (1992). 
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2. Block conductivity 

 

The usage of the terms equivalent, block, effective or upscaled, applied to conductivity, 

instead of the simpler usage of the term average, reflects the fact that the conductivity is 

not an additive property. It is well known for electrical conductance analogy that the 

equivalent conductivity for a group of cells serially arranged is equal to their harmonic 

average, whereas if the cells are arranged in parallel the equivalent conductivity is equal 

to the arithmetic average. Cardwell and Parsons (1945) proved that the equivalent 

conductivity of a heterogeneous block is bounded above and below by the arithmetic 

and harmonic averages, respectively. 

 

2.1. Definition 

Following Rubin and Gómez-Hernández (1990), block conductivity,  is defined 

from an extension of Darcy’s law as: 

 

 (1) 

 

where: 

V: represents the block support 

qw is the specific discharge vector at cell w within the block 

u is the position vector that sweeps the inside of the block 

 is the gradient of the piezometric head at w. 
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Vector integration is performed by integration of its components. In words, block 

conductivity is the tensor that relates the block spatial average of the specific discharge 

vector to the spatial average of the piezometric head gradient vector. 

The cell conductivities  are implicit in Eq. (1) since qw and  are related at the 

measurement scale through : 

 

Notice that, by definition, KV is, like Kw, a tensor. 

In the different approaches to upscaling described next, the definition in Eq. (1) is not 

always explicitly adopted; in some cases it is implicit to the formulation, in others, 

alternative definitions are employed. When the latter occurs, the alternative definition is 

indicated. However, in all cases, the purpose of the upscaling procedure is to obtain a 

description of conductivity spatial variability at the numerical scale that reproduces 

some average behaviour of the conductivity field at the measurement scale. 
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3. Evolution of block conductivity upscaling 

We start with the local techniques, that is, those techniques that assume that the block 

conductivity tensor is intrinsic to the cell conductivities within the block. Then we 

continue with the non-local techniques, in which block conductivities depend not only 

on the cell conductivities within the block, but also on the flow boundary conditions 

necessary to determine qw and  in Eq. (1). Then, another set of techniques in which 

the definition of block geometry becomes part of the upscaling problem is presented. 

Finally, a set of techniques for the direct generation of numerical scale grids from 

measurement scale data is presented. 

 

3.1. Local techniques 

Local techniques consider that block conductivity is intrinsic to the cell conductivities 

within the block as would be the case if block conductivity is a material property. Local 

techniques are the natural extension of the one-dimensional results, for which it is 

known that block conductivity is equal to the harmonic average of the heterogeneous 

conductivities. In the local techniques the block conductivity is an explicit function of 

the cell conductivities. The methods described in this subsection rely on the assumption 

that the cell conductivity tensor Kw degenerates into a scalar Kw. The simple average 

approach and the renormalization technique also assume that the resulting block 

conductivity tensor KV is also a scalar KV. While the first assumption can be justifiable, 

the second one is more difficult to justify, since the tensorial nature of block 

conductivities is partly a consequence of the anisotropic spatial correlation of cell 

conductivities (Lake, 1988), even for the case of scalar cell conductivities. 

 

3.1.1. Simple average 

For 1-D flow, block conductivity is equal to the harmonic mean of the cell 

conductivities within the block. For 2-D flow, there is a very strong result from the 

theory of effective parameters (Matheron, 1967) that applies for infinite blocks with 

heterogeneous conductivities having an isotropic spatial correlation and a frequency 
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distribution which is identical to the frequency distribution of their reciprocals (as is the 

case if conductivity follows a lognormal distribution). Matheron (1967) proved that, 

under these conditions, block conductivity is equal to the geometric mean. This result, 

which, in principle, applies only to infinite blocks has been used extensively in the 

petroleum and hydrology literature for finite blocks without much justification (e.g. 

Dagan, 1982b, 1985; Clifton and Neumann, 1982; Hoksema and Kitanidis, 1984, 1985). 

Through numerical experiments in 3-D, Warren and Price (1961) concluded that the 

geometric average is the most appropiate estimator of block conductivities for spatially 

uncorrelated cell values. Bouwer (1969) used analog simulations to arrive to the same 

conclusion. 

Grindheim (1990) and Durlofsky (1992) investigated the use of simple average methods 

to compute block conductivities in 2-D for different spatial distribution of the cell 

conductivities (uncorrelated and correlated, statistically isotropic and anisotropic, and 

sand-shale binary distributions). Some of the averages investigated include: arithmetic, 

geometric, harmonic, arithmetic-harmonic and harmonic-arithmetic. By comparing the 

flow results in the grid at the measurement scale and the flow results in the upscaled 

grid they concluded that there is no simple average that is valid for all heterogenous 

formations. 

Gómez-hernández and Wen (1994) showed that, in 2-D, the geometric mean gives good 

estimates of the block conductivity as long as the spatial variability of cell 

conductivities does not display a strong anisotropy. 

 

3.1.2. Power average 

Cardwell and Parsons (1945) proved that block conductivities must lie in between the 

arithmetic and harmonic averages of the cells within the block. Based on this statement, 

Journel et al. (1986) proposed the use of a power average to compute equivalent block 

conductivities: 
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by varying the exponent p between -1 and 1, the power average varies between the 

harmonic and the arithmetic averages, with the geometric mean corresponding to p=0. 

They argue that the exponent p depends on the specific type of cell conductivity spatial 

heterogeneity and can be obtained by calibration with the results obtained from detailed 

numerical simulations in a fraction of the blocks being upscaled. The technique was 

later successfully applied by Deutsch (1989), Gómez-Hernández and Gorelick (1989), 

Bachu and Cuthiell (1990), Desbarats and dimitrakopoulos (1990) and Desbarats 

(1992b).  

Some of their findings are: 

(i) the power p is case-specific and is function of the type of heterogeneity within 

the block, the block shape and size, and the flow conditions within the block 

(ii) for the case of statistically anisotropic cell conductivities, p is direction 

dependent and can be used to identify the components of a block tensor 

given that their principal directions are known 

(iii) there is no simple way of predicting the value of p without resorting to 

detailed numerical experiments. 

The attractions of this technique are its simplicity, the bounded range of p values, and 

that it can be used in 2-D and 3-D. 

 

3.1.3. Renormalization 

The so-called real-space renormalization technique, primarily developed for the study of 

critical phenomena in physics, such as percolation (Kirkpatrick, 1973; Wilson, 1979; 

shah and Ottino, 1986) was applied for the first time to the computation of bock 

conductivities by King (1989). The technique is based on the calculation of the block 

conductivity of a very small block (as small as 2 by 2 cells in 2-D) and then 

successively upscaled using self-repetitive geometry until the final block size is 

reached. The technique is extremely fast and is not limited by the domain size or 

variance of the cell conductivities. The speed of the technique relies on an analytical 

expression of the block conductivity for a 2 by 2 block, which is borrowed from the 

expression of the electrical conductance of a 2 by 2 resistor network. Initially King 
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(1989) applied renormalization to 2-D grids of spatially uncorrelated values. Later Shah 

and Ottino (1986) extended the technique to 3-D and Mohanty and Sharma (1990) to 

correlated fields. The method provides excellent results (when comparing flow 

simulations at the measurement and block scales) for statistically isotropic, lognormal 

conductivity fields. For strongly anisotropic media (such as sand-shale formations) the 

method did not perform well due to the poor resolution of the successive upscaling 

around the edges of the shales. 

Williams (1989) developed a large cell method based on renormalization for the 

calculation of block conductivities for strongly anisotropic media with a fraction of 

impermeable material. 

The big advantage of renormalization is its speed. The major drawback is that, implicit 

to the calculation of electrical conductance for a 2 by 2 resistor network in 2-D, there 

are boundary conditions applied to the sides of each 2 by 2 block which may be 

unrealistic. Malick (1995) demonstrated that these possibly unrealistic boundary 

conditions, when repeatedly applied during the course of renormalization, may cause 

several error in the final block conductivity estimate. He compared block conductivities 

obtained using Eq. (1) after the solution of the flow equation at the measurement scale. 

The error is as large as 70% for a lognormal distribution of conductivities when the 

coefficient of variation reaches 3 and could be up to 200% for sand-shale distributions 

with shale density of 50%. 

 

3.1.4. Stream-tube 

The stream-tube method (Haldorsen and Lake, 1984; Begg and King, 1985; Haldorsen 

and Chang, 1986; Begg and Carter, 1987; Begg et al., 1985, 1989) is specially designed 

to calculate block conductivities in sand-shale formation, that is, for formations in 

which shale’s are dispersed in a homogeneous matrix of sandstone, with a large contrast 

between the conductivities of sand and shale’s, so that horizontal shale’s can be 

regarded as barriers for vertical flow. The thickness of the shale’s is assumed to be 

negligible and they are distributed within the sand in a uniform direction (say, 

horizontally). In the direction parallel to the shale’s, given their negligible width, the 

block conductivity is equal to the sandstone conductivity. In the direction orthogonal to 
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the shale’s, these act as barriers that increase the tortuosity of the streamlines 

proportionally to the length and frequency of the shale’s.  

The block conductivity orthogonal to the shale’s is related to the streamline lengths 

through a tortuosity factor. Begg and King (1985) and Begg et al. (1985, 1989) derived 

an expression of vertical block conductivity as a function of shale proportion and the 

statistics of shale length. This functional relation provides a block vertical conductivity 

without knowledge of the exact geometry of the shales within the block. 

The stream-tube method has been widely used in the petroleum industry and 

demonstrated to give good results. However Desbarats (1987) showed that the method 

overestimates vertical conductivity when shale density is large, that is, when flow paths 

become very tortuous. 

 

3.1.5. Flow anisotropy 

Of the methods presented before, the power average and the stream-tube approach 

assumed that block conductivity could be a tensor. In the power average approach, the 

principal directions of the block conductivity are supposed to be parallel to the block 

sides, and a different power p is used to determine each principal component. In the 

stream-tube approach, the principal directions of the block conductivity are supposed to 

be parallel and orthogonal to the shale orientation. In some cases, it is not possible to be 

sure which are the principal orientations of the block conductivity tensor, nor to assume 

that all blocks have the same orientation. 

Kasap and Lake (1989) were interested in computing block conductivity tensors when 

cross-bedding is observed at the measurement scale. This is a case in which the 

directions of the principal components of block conductivity cannot be known a priori, 

and can vary from block to block. They developed an analytical technique for 

computing tensor block conductivities for the case of anisotropic conductivities at the 

measurement scale. Their method is based on the recurrent use of the block conductivity 

values obtained for a block-composed of two layers of homogeneous but anisotropic 

conductivities, under the assumption that flow lines are parallel. Equations were 

obtained for the tensor elements of the block conductivity and were validated using 

numerical simulations. 
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3.2. Non-local techniques 

Local techniques derive block conductivities which are explicit functional relations of 

the cell conductivities within the block. However the dependence of the resulting values 

on some implicit boundary conditions indicates that the block conductivities are non-

local, that is, they are not intrinsic to the block, they also depend on the flow conditions 

within the block, which, in turn, depend on the boundary conditions. 

In the non-local techniques discussed next, block conductivity is not given as an explicit 

expression of the cell conductivities within the block; instead, Eq. (1) is applied directly 

after determining the vectors of specific discharge qw and piezometric head gradient 

 by solving the groundwater flow equation at the measurement scale. The 

techniques differ in the extent of the area within which flow is numerically solved at the 

measurement scale, and on the boundary conditions used for the solution. All of these 

methods are referred to as Laplacian since they are based on the solution of the Laplace 

equation. 

 

3.2.1. Simple Laplacian 

 

In the simple Laplacian technique, the block being upscaled is isolated from the rest of 

the blocks in the aquifer. The principal components of the block conductivity tensor are 

assumed to be parallel to the block sides, and each principal component is computed by 

numerically solving a flow problem with prescribed heads in the faces of the block 

orthogonal to the principal direction and impermeable otherwise. Fig. 2 shows the flow 

problem that has to be solved to determine the x-component of the block conductivity 

tensor in a two dimensional block. A similar problem has to be solved for the y-

component after rotating the boundary conditions 90º.  

Application of Eq. (1) to the solution of these problems yields a very simple expression 

for the components of the block conductivity as the ratio between the average specific 

discharge through any cross-section orthogonal to a principal direction, and the overall 

piezometric gradient between the opposite faces at which prescribed heads are applied 

(Gómez-Hernández, 1991; Sánchez-Vila, 1995).  
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Fig. 2. Boundary conditions used in the simple Laplacian approach. These boundary 
conditions are used to determine the component KV,xx of the diagonal block 
conductivity tensor. The same boundary conditions after rotation of 90º are used to 
determine the component KV,yy 

 
For the 2-D example in Fig. 2, the expression for the component in the x-direction is 

 

 

 

where:  

Q is the total flow through any cross-section parallel to the y-axis 

y1-y0 is the block width 

h1-h0 is the piezometric head drop from face to face 

x1-x0 is the lock length 

 

Warren and Price (1961) were the first to use this approach. They analyzed random 

distributions of cell conductivities within the block, and found that the geometric mean 

was a good approximate of the block conductivities. 
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The Laplacian techniques suppose a big step towards accuracy in the estimation of 

block conductivities from the local approaches described previously. However, in this 

simple Laplacian approach we can criticize the assumption that block conductivity 

tensors are imposed to have principal components parallel to the block sides, and that 

the boundary conditions used to solve the flow problems at the measurement scale may 

be different from the boundary conditions actually existing at the faces of the block in 

the model. 

 

3.2.2. Simple Laplacian extended 

The simple Laplacian method discussed above requires the solution of a small flow 

problem for each block in the grid. Holden et al. (1989) tries to speed up the method 

using an iterative approach. If an iterative technique is used for the solution of the flow 

equation within each block, one could compute, after each iteration, an estimate of the 

block conductivity tensor components from the hw and the qw values at the current 

iteration. He key idea is to stop the iterations before the solution to the flow equation 

converges, under the conjecture that the block conductivity tensor components converge 

faster than the piezometric head distribution. In their example of 2-D rectangular blocks, 

they found that with many less iterations than needed for the convergence of 

piezometric heads, block conductivity tensors converge to a stable solution. Holden and 

Lia (1992) further extended this technique to calculate full block tensors in 3-D. 

 

3.2.3. Laplacian using flow solution at the measurement scale over the entire aquifer 

The boundary conditions used in the simple Laplacian approach are arbitrarily set to 

help compute directional conductivities in the directions parallel to the block sides. It 

would be better to use boundary conditions as close as possible to those existing around 

the block when the flow equation is solved at the measurement scale over the entire 

aquifer. But, knowledge of the boundary conditions around the block sides requires the 

solution of the flow equation at the measurement scale over the entire aquifer, defeating 

the purpose of upscaling, which is to obtain a coarse description of block conductivities 

to alleviate the cost of solving the flow equation at the measurement scale. 
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There is one justification for the solution of the flow equation at the measurement scale 

in order to obtain block conductivities: when block conductivities are to be used as 

input parameters for multiphase flow modelling. The advent of fast workstations, the 

computer resources available to petroleum engineers and their interest in accurate 

predictions of multiphase flow simulations prompted the development, in the petroleum 

literature, of a series of techniques for the computation of (saturated) block 

conductivities using the distribution of  and qw within the block resulting from the 

solution of the (single-phase) flow equation at the measurement scale over the entire 

aquifer. 

In the quest for accurate block conductivities, it was understood that assuming the 

principal components of the block conductivity parallel to the block sides was not 

justified. Therefore, techniques to determine block conductivity tensors with arbitrary 

orientations of their principal directions had to be developed. 

White (1987) and White and Horne (1987) were the first to propose a technique to 

determine full non-diagonal block conductivity tensors, and the first to suggest that Eq. 

(1) should be used with values of  and qw from the solution of the flow equation at 

the measurement scale over the entire aquifer. In their 2-D exercise, they propose to use 

the following equation to determine the block conductivity, for each block: 

 

 

 

where: 

the overbar is used to indicate spatial average within the block 
qw,x, qw,y,  are the respective components of vectors qw and  

KV,xx, KV,xy, KV,yx and KV,yy are the tensor components of KV 
 

The problem with this approach is that the above linear system contains two equations 

and four unknowns, leaving the definition of the block conductivity undetermined. 

White and Horne suggested that the problem could be overcome by solving the flow 
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equation n times at the numerical scale, varying the boundary conditions applied to the 

entire aquifer. The resulting over-determined set of 2n linear equations is solved by 

least-squares. The need to use several boundary conditions detaches the computation of 

the block conductivity tensor from a specific regional flow pattern, thereby producing 

block tensors that perform well under different flow scenarios. 

White and Horne’s approach succeeds in obtaining full non-diagonal tensors, and in 

accounting for aquifer-scale boundary conditions. The major drawback is that it is 

computationally intensive and that for large aquifers it may be impractical, especially in 

3-D. 

Pickup et al. (1992) considered that it would be more convenient to try to determine the 

block conductivity tensor for specific boundary conditions existing at the aquifer scale, 

instead of producing tensors that are applicable to a wide range of flow conditions. 

Their argument is that such an approach should yield more accurate block conductivities 

for the specific flow scenario of interest, with the drawback that the upscaling should be 

repeated if aquifer conditions change. After solving the flow equation at the 

measurement scale over the entire aquifer, the boundary conditions at the sides of each 

block are determined. These boundary conditions are the ones that should be used to 

solve the flow equation within the block and, by application of Eq. (1), yield the block 

conductivity tensor. The problem is, as stated before, that solutions of the flow equation 

corresponding to at least two boundary conditions are necessary to determine uniquely 

the four components of a 2-D block conductivity tensor. Pickup et al. (1992) proposed 

solving two flow problems for each block, with boundary conditions derived from the 

correct boundary conditions by perturbing them enough to produce a different flow 

pattern within the block but without deviating too much from the correct values. The 

major drawback of this approach is the high sensitivity of the resulting block 

conductivities to the magnitude of the perturbation and the difficulty of selecting an 

appropriate perturbation value. 

Another approach based on the solution of the flow equation at the measurement scale 

with global boundary conditions was developed by Yamada (1995) and will be 

discussed later in relation to block geometry definition. 
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3.2.4. Laplacian with skin 

To reduce the computer time in White and Horne’s method, Gómez-Hernández (1990, 

1991) presented another Laplacian approach inspired by that of White and Horne 

(1987). His method also yields full block conductivity tensors, and attempts to impose 

realistic boundary conditions on the sides of the block to determine the cell-specific 

discharges and piezometric head gradients. Instead of solving the flow equation at the 

measurement scale over the entire aquifer, the flow equation is solved over an area (or 

volume in 3-D) comprising the block plus a “skin” region. The size of the skin region 

was arbitrarily set to one-half of the block size in each direction. As in White and Horne 

(1987), the flow equation must be solved for at least two sets of boundary conditions 

applied to the outer sides of the skin area in order to determine the block conductivity 

tensor components. Gómez-Hernández chose to use four sets of boundary conditions as 

shown in Fig. 3, forcing flow parallel to the block sides and the block diagonals. He 

showed that this method works well for a variety of heterogeneous formations 

(isotropic, anisotropic and sand/shale distributions). Holden and Lia (1992) extended 

this technique to 3-D. 

 

 
Fig. 3. Boundary conditions used in the Laplacian with skin approach. For each of the 
four sets of boundary conditions, flow is solved at the measurement scale within an area 
that contains the block and a “skin” around of half the block size in each direction 
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3.2.5. Laplacian with periodic boundary conditions 

Neither White and Horne (1987) nor gómez-Hernández (1990, 1991) constrain the 

block conductivity tensor to be positive-definite and symmetric. Conductivity tensors 

must be positive-definite, otherwise water could move in the direction of increasing 

piezometric heads. Whether block conductivity tensors must be symmetric is a subject 

of debate not yet resolved. 

Durlofsky and Chung (1990) and Durlofsky (1991) present a Laplacian approach that 

always yields symmetric and positive definite block conductivity tensors. The novelty 

of their method is to use the type of boundary conditions that would result from a 

“periodic” aquifer made up by the repetition in space of the block being upscaled. The 

method is based on the assumption that the spatial heterogeneity of measurement-scale 

conductivities occurs at two scales, a large-scale variability that defines the long trends 

in conductivity variation and a small-scale variability that is periodic in space. The 

periodicity of the aquifer description implies full correspondence between heads and 

flows at opposite sides of the block.  

The block equation within each block is solved for two orthogonal directions of the 

overall head gradient. Then, Eq. (1) is established for each solution, resulting in four 

equations with four unknowns. Durlofsky proves that the solution of these set of 

equations always yields a symmetric and positive-definite tensor (i.e. KV,xy = KV,yx , 

KV,xx KV,yy - KV,xy KV,yx≥0). This approach provides exact analytical results for KV for 

truly periodic media. For non-periodic media, the method is theoretically valid if the 

block size is much larger than the scale of the heterogeneity at the measurement scale.  

Comparisons made by Pickup et al. (1992, 1994) showed that Durlofsky’s approach is 

quite accurate and robust even for situations in which periodic boundary conditions do 

not strictly apply. 

 

3.2.6. Non-parallel flow 

The dependence of block conductivities on the boundary conditions applied to the block 

is evident at this stage. However, all the methods described up to this point use 

boundary conditions that impose parallel flow through the block. Desbarats (1992a) 
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studied the problem of determining block conductivities under radial flow. More 

precisely, he determined a scalar block conductivity to be assigned to a heterogeneous 

block with a constant-rate well at its centre when prescribed and constant piezometric 

heads are applied to the block boundaries.  

Using an empirical approach he concludes that, in 2-D, a weighted geometric average of 

the cell conductivities, with weights proportional to the inverse of the squared distance 

to the well, yields good results for low to moderate variance of log-conductivity. 

Desbarats (1993) also studied the problem of computing block conductivities for blocks 

containing two wells in a dipole configuration. For this case, he found that the interwell 

conductivity approximates to the harmonic mean of the conductivities averaged over 

circular regions centered at each well. 

 

3.2.7. Analytical approaches 

Rubin and Gómez-Hernández (1990) derived, and validated numerically, an analytical 

expression for 2-D block conductivities for the case of a block embedded in a 

heterogeneous infinite aquifer with constant specific discharge specified at infinity. Cell 

conductivities were assumed to be a scalar with an isotropic spatial correlation. It was 

also assumed that, as a consequence of the latter, block conductivities were also scalar. 

Under these conditions block conductivity becomes: 

 

 (2) 

 
where: 

Kg is the geometric mean of conductivity over the entire aquifer 
The overbar indicates spatial average values over the block V 

Y’ is the fluctuation of Y=ln(Kw) with respect to its mean 
ja is the magnitude of the mean piezometric head gradient (which is 

supposed to be parallel to the x-axis) 
j’x is the fluctuation of the x component of the gradient  
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This expression, which is only valid for small variances of Y, shows clearly the 

dependence of the block conductivity on the flow conditions within the block through 

the terms containing j’x. 

Sáez et al. (1989) also provided an analytical expression for block conductivities using 

the multiple scale method. They considered two observation scales. At the larger scale, 

the small scale heterogeneity is assumed to be non-detectable, and hydraulic 

conductivity varies smoothly. At the smaller scale, the heterogeneity of the medium is 

apparent and hydraulic conductivity varies rapidly and erratically in space. At any given 

location, the hydraulic conductivity is expressed as the sum of a large scale value plus a 

perturbation due to the heterogeneity at the smaller scale. Similarly, the hydraulic head 

is expressed as the sum of the large scale value plus a perturbation. Conductivity for a 

block much larger than the small scale of theterogeneity is defined as the tensor KV for 

which the large scale component of the hydraulic head satisfies a mass conservation 

equation: 

 

where: 

h(0) is the large scale component of the hydraulic head. 

 

Sáez et al. (1989) solved the above equation for the case of a periodic aquifer with unit 

period being the block for which the equivalent conductivity is sought. They obtained 

the following expression for block conductivity: 

 (3) 

that is, block conductivity is the sum of the arithmetic average KA and a tortuosity 

tensor defined by the following spatial average: 

 

where the vector function g satisfies the boundary-value problem: 

 (4) 

with g periodic in the unit cell. 
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The problem with the analytical solution of block conductivity given by Sáez et al. is 

that it is limited to blocks larger than the scale of the erratic variability of cell 

conductivities. Furthermore, it requires the permeable medium to be periodic with 

period equal to the block size. 

 

3.2.8. Method of moments 

Kitanidis (1990) used a definition for block conductivity different from that of Eq. (1). 

His definition is based on the method of moments, first formulated by Aris (1956) and 

later generalized by Brenner (1980). In the method of moments the definition of block 

conductivity differs from that in Eq. (1). Instead of trying to find the block conductivity 

that relates average flow to average gradient, the objective is to find a block value that 

matches the spatial moments of the hydraulic head in the heterogenous medium as 

explained below. This definition requires the solution of a transient problem as opposed 

to the steady-state solution on which Eq. (1) relies. The application of the method of 

moments is better understood with a example. Consider an infinite 2-D aquifer with 

constant hydraulic conductivity in which a Dirac pulse in the hydraulic head is 

introduced at time zero, at the origin. The solution of the transient dissipation of the 

pulse is given by a Gaussian bell: 

 

where: 

t is time 

 is called the diffusivity tensor 

S is the specific storage coefficient 

 

The second moment of the function h(x,t) with respect to the origin is the “moment of 

inertia” and is given by 
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Note that half the rate of change of the second moment is given by . 

In the method of moments, the evolution of a Dirac pulse of piezometric head at the 

origin is solved in the heterogeneous block, and the rate of change of the second 

moment is identified with the diffusivity tensor of the homogeneous equivalent block 

conductivity value. 

To solve for the evolution of the Dirac pulse some hypotheses are needed. First, the 

aquifer is assumed to be periodic with a period much larger than the scale of variability 

of Kw. Second, the moments are defined at two scales (similarly to Sáez et al. (1989); 

only the moments at the larger scale are of interest. And third, only slowly varying flow 

is considered. Under these hypotheses the resulting expression for KV is very similar to 

the expression obtained by Sáez et al. (1989). The block conductivity tensor is equal to 

its arithmetic spatial average plus an integral term equivalent to the tortuosity term in 

Eq. (3). This integral term is written in terms of a function g that must satisfy a 

boundary value equivalent to that in Eq. (4). 

Dykaar and Kitanidis (1992a,b) discuss a numerical technique for the efficient solution 

of the boundary value problem (4), called the numerical spectral method. This method 

has the same drawbacks as the one by Sáez et al. (1989): it is limited to large blocks and 

requires the assumption that the medium is periodic with period equal to the block size. 

 

3.2.9. Energy dissipation 

Indelman and Dagan (1993a,b) and Bφe (1994) used the concept of energy dissipation 

to define block conductivity tensors. Energy dissipation is defined as the energy per unit 

time necessary to force the fluid through the porous medium. A necessary condition on 

the block conductivity value is that it should produce the same energy dissipation as the 

heterogeneous block. Bφe (1994) showed that with this definition, and periodic 

boundary conditions applied to the sides of the block, the resulting block conductivities 

coincide with those of Durlofsky (1991). Indelmann and Dagan (1993a,b) were more 

interested in obtaining the statistical properties of the upscaled blocks, than in the one-

to-one relationship between each block and the cell conductivities within. Their 

approach is mentioned later when discussing the direct generation of block 

conductivities. 
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3.3. Block Geometry 

All of the methods discussed above investigate upscaling of grids made up of 

rectangular blocks; none of them has been extended to the case of non-rectangular grids. 

Much effort has been devoted to computing block conductivities for heterogeneous 

blocks without paying much attention to the geometry of the blocks. One should not 

forget that upscaling is not an objective per se: the objective of upscaling is to use the 

block values for the simulation of (single o multiphase) flow and, possibly, mass 

transport. Some of the more elaborate Laplacian methods provide, for a fixed block 

geometry, the best block conductivity estimates one can get. In order to improve these 

estimates, we should try to optimize the geometrical definition of the blocks. 

No matter how good an upscaling method is, it always involves an averaging of the 

flow problems that filters out some of the details of flow within the block. One can 

attempt to devise a technique to define the geometry of the blocks so that the averaging 

implicit in upscaling is minimal in the areas in which the details of flow behaviour are 

most consequential to the final objective. For instance, if the final objective is to 

simulate mass transport and early mass arrivals are most consequential, a geometry 

definition of the blocks trying to delineate fast channels will reduce the impact of the 

loss of resolution on the prediction of early mass arrivals (e.g. Durlofsky et al., 

1994a,b). 

Although gridding for flow simulation is an old subject, gridding techniques for flow 

simulation in conjunction with upscaling are relatively recent. In this section we 

describe four of these techniques. 

 

3.3.1. Elastic grid 

Garcia et al. (1990) introduced the concept of an “elastic grid”. They devised an 

algorithm that starts from an uniform square grid of the aquifer, and then displaces the 

corners of the blocks with the objective of minimizing the heterogeneity of the cell 

conductivities within the blocks. Each edge connecting two vertices is assigned an 

elasticity coefficient that is made a function of the cell conductivity variance of 

adjoining blocks. The potential energy of each edge is proportional to the square of its 
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length and its elasticity coefficient. The block vertices are adjusted in an iterative 

manner until the total potential energy is minimized. This approach results in an 

irregular grid with blocks that are mildly heterogeneous, and for which simple upscaling 

techniques should provide good results. A typical grid is shown in Fig. 4. 

Farmer et al. (1991) devised a method similar to Garcia et al. in which the optimization 

is carried out by simulated annealing. Robey (1995) introduced an elastic gridding 

approach in which the objective to be met by the final grid was related to a global 

measure of heterogeneity, instead of a local measure as in the approach of Garcia et al. 

 

 

Fig. 4. Elastic grid. A typical elastic grid obtained using the Garcia et al. (1990) method, 
where the objective is to minimize the cell conductivity heterogeneity within each 
block. The grid at the measurement scale contains 200 by 150 cells. The grid at the 
numerical scale contains 30 by 30 blocks. Dark cells indicate high conductivity values 
 

 

3.3.2. Elastic grid with flow variables 

The elastic grid approaches discussed above do not incorporate flow variables for the 

determination of the block geometries. Tran (1995) and Tran and Journel (1995) 

realized that minimization of the variance of cell conductivities within the blocks does 

not ensure that fast flow paths are preserved in the upscaled model. There is a need to 

define the block geometry as a function of the flow variables. Tran and Journel 

proposed an extension of White and Horne’s (1987) Laplacian method. After solution of 
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the flow equation at the measurement scale over the entire aquifer, the block geometries 

are determined by the Garcia et al. (1990) elastic gridding algorithm bit applied to the 

stream function values. The coefficient of elasticity of any segment joining two vertices 

is now a function of the variance of the stream values at adjoining blocks. In this way, 

they ensure that the density of streamlines is approximately constant within each block. 

Consequently, blocks are small in regions of high flow velocity and large where flow 

velocity is small. From the point of view of flow and transport at the aquifer scale, Tran 

and Journel’s approach gives better results than those of Garcia et al. 

 

3.3.3. Simplified elastic grid with flow variables 

The previous method, although superior to the original method of Garcia et al. (1990), 

has the same drawbacks as White and Horne’s (1987): the flow equation has to be 

solved at the measurement scale over the entire aquifer, in order to know the streamline 

function in the cells. Tran’s approach is computationally intensive and cannot be used 

for large aquifers. To solve these problems, Wen (1996) implemented a variation that 

does not require the solution of the flow equation at the measurement scale. He 

proposed an iterative approach in which both block conductivities and block geometries 

are updated at each iteration. His method starts with an elastic grid obtained using the 

Garcia et al. (1990) method in its original implementation, that is, minimizing the 

heterogeneity of cell conductivities within the blocks.  

Then, an extension of Durlofsky’s (1991) Laplacian method for irregular blocks is used 

to determine block conductivity tensors. The flow equation is solved at the numerical 

scale (not the measurement scale) using the geometry definition and the block 

conductivities from the previous iteration. With this solution, velocities are computed in 

each cell of the aquifer, and the Garcia et al. elastic gridding algorithm is used to 

redefine the block geometry, with the difference that the potential energy of edges is 

now proportional to the variance of flow velocity on adjoining blocks, instead of to the 

variance of cell conductivities. With the new geometry, a new iteration starts: block 

conductivities are re-computed, and flow is again solved at the numerical scale. The 

iterative process stops when neither the block geometries nor the block conductivities 

change substantially from one iteration to the next. This method gives results as good as 
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Tran’s (1995) at a fraction of the cost. Its major drawback is that there is no theoretical 

proof of convergence of the technique, although for the cases in which it has been 

tested, convergence was always reached. 

 

3.3.4. Potential-streamfunction space discretization 

Yamada (1995) approached the upscaling process with a different perspective. He 

accepts that the boundary conditions of the simple Laplacian (Fig. 2) may depart frim 

the actual boundary conditions around the perimeter of the blocks. However, instead of 

trying to refine the boundary conditions and make them closer to the ones that the 

blocks actually have when embedded within the aquifer, he searches for the block 

geometries for which the simple boundary conditions in Fig. 2 apply. These block 

geometries can easily be defined if the gridding is carried out in the potential stream-

function space. After solving the flow equation at the measurement scale, the results are 

mapped to the potential-streamfunction space. In this space, each block is defined as a 

rectangle, thus ensuring that in two opposite faces the streamfunction is constant, and in 

the other two opposite faces the fluid potential is constant. With this definition, the use 

of now-flow boundary conditions in two sides of the block, and prescribed head 

conditions in the other two sides, is completely justified.  Furthermore, since flow 

cannot cross streamlines, there is no need to compute any component of the  block 

conductivities in the direction orthogonal to the bounding streamlines (no-flow 

boundaries). Yamada found that flow simulations performed in the reshaped grid 

system successfully reproduce the single-phase head distributions and produce 

reasonable approximations for head and saturation on two-phase problems. 

Although this technique is attractive, it has three major drawbacks:  

(i) it has been devised in 2-D and its extension to 3-D is not trivial owing the 

difficulty of computing streamtubes in 3-D 

(ii) the reshaping done in the potential-streamfunction space requires that the 

streamfunction be single-valued at each location – if point sinks or sources are 

present, the streamfunction will be multi-valued at the well locations 

(iii) it requires the solution of the flow equation at the measurement scale over the 

entire aquifer 
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3.4. Direct block conductivity generation 

Reconsidering again that the objective of upscaling is the solution of the flow equation 

at the numerical scale, some authors have concluded that the generation of grids at the 

measurement scale (Fig. 1(a)), with the sole purpose of upscaling them to produce a 

block conductivity model, is a waste of resources. The question that these authors have 

considered is: can block conductivities be generated directly from a few data at the 

measurement scale, thus avoiding the generation of the measurement scale grid values 

and the time consuming step of block upscaling, and yet displaying the same 

characteristics observed in the upscaled models obtained with the other techniques? Fig. 

5 sketches this concept. In the top row, the so –called two-step approach (Gómez-

Hernández, 1991) is depicted: from a set of measurements, a set of realizations of 

conductivities is generated at the measurement scale; these realizations are upscaled to 

the numerical scale, and flow is solved in each of them to arrive at a set of realizations 

of the spatial distribution of hydraulic conductivity within the aquifer. In the bottom 

row, the direct simulation approach is depicted: the initial and final points are the same 

as in the two-step approach, the difference is that the block values are generated directly 

from the measurements. 

 

 
Fig. 5. Two-step versus direct simulation. In the top row, the two-step approach; at the 
bottom, the direct simulation approach. 
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3.4.1. Scalar block conductivities 

Rubin and Gómez-Hernández (1990) were the first to approach this problem 

analytically. Taking as a starting point the analytical result of their upscaling technique 

(Eq. (2)), they computed what should be the expected value and covariance of block 

conductivities, as well as the cross-covariance between cell and block conductivity 

values. With these statistics and the hypothesis that the multilognormality assumed for 

the cell conductivities is preserved after upscaling, they could proceed to the generation 

of scalar block conductivities conditioned on cell measurements by any standard 

geostatistical technique. Their method is limited by the assumptions used to derive Eq. 

(2), namely the isotropic spatial variability of cell conductivities, small variability of 

log-conductivity, and the assumption that block conductivity is a scalar. 

 

3.4.2. Training images 

To overcome the problems of the previous approach, Gómez-Hernández (1990, 1991) 

proposed the inference of the cell to block covariance’s through the use of a training 

image. The idea is to start by generating a “training grid” at the measurement scale, on 

which any of the upscaling methods described in the previous sections is used to 

determine the block conductivity tensors. At this stage, two realizations are available, 

one with cell conductivities and the other with the corresponding block conductivity 

tensors; from these two realizations, the cross- and auto-covariances among the cells 

and the components of the block conductivity tensors can be experimentally inferred. 

Once the training image has been used to infer these covariances, direct generation of 

the components of the block conductivity tensor is possible, without the need to resort 

to upscaling again. 

The major disadvantage of this method is that too many auto- and cross- covariances 

have to be inferred. In 2-D, the number of variables involved, assuming that the block 

conductivity tensors are symmetric, is four: one for the cell conductivity and three for 

the block conductivity tensor (the components in the two principal directions and the 

orientation of the main principal direction). Consequently, the number of covariance’s 

to estimate is nine. In 3-D, in which seven variables would be involved (one for the 

cells, and six for the tensor), the number of covariance’s to infer is 27! 
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In order to reduce the number of covariances to infer, Tran (1995) proposed to infer the 

auto- and cross-covariances only for the components of the block conductivity; 

moreover, he assumed that the principal components of the conductivity tensor are 

parallel to the block sides, thereby reducing the number of variables to two in 2-D and 

the number of covariances to three. The conditioning to cell data (for which the cross-

covariance cell-block would be required) is resolved through a heuristic approach. 

 

3.4.3. Regularization 

Desbarats (1989, 1992b) derived the expected value and variance of block 

conductivities when these are obtained by power averaging. He used a linear 

approximation of the log-conductivity obtained by power averaging together with 

standard regularization techniques (e.g. Journel and Huijbregts, 1978) to compute the 

expected value ad variance of block values. Desbarats did not pursue the computation of 

the cell-block covariance, or the block-block covariances, but it would be simple to 

extend his results to determine these values. Once these covariances are also computed, 

the direct generation of block conductivities conditional to cell conductivity data is a 

trivial matter of stochastic co-simulation of multiple variables. The drawbacks of the 

approach are those stemming from the use of the power-average method to compute 

block conductivities and from the linearization of the log-conductivity. 

 

3.4.4. Energy dissipation 

Using an energy dissipation definition for block conductivity, Indelmann and Dagan 

(1993a, b) derived the expected value and covariance of the upscaled block values. 

They stated that imposing the preservation of energy dissipation to compute block 

conductivities is not enough to enable derivation of a one-to-one relationship between 

block conductivity and the cell conductivities within. However, they showed that 

identity between the energies dissipated at the measurement and the numerical scales 

could be satisfied in a statistical sense. Working under these premises, they proceeded 

to compute the expected value and covariance of the components of three-dimensional 

equivalent conductivity symmetrical tensors, arriving, for the most-general three-
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dimensional case, at the expressions of six geometrical means and 15 cross-covariances 

of log-conductivity. These expressions are complex, and the authors indicate the the 

existence and uniqueness of a solution in the most general case is not proven. However, 

for the specific cases they analyze, good insight is obtained about the spatial variability 

of block conductivities. Among their conclusions, they stated that, except for blocks of 

circular of spherical shape, the block conductivity tensor is always anisotropic. 

Therefore, in all numerical methods, block conductivities have to be given as a tensor of 

anisotropic covariance since numerical blocks are never circular or spherical. In their 

papers, the authors also described the step-by-step procedure for the direct generation of 

block conductivities. Sánchez-Vila et al. (1995) showed that the method of Rubin and 

Gómez-Hernández (1990) results in block conductivities which are statistically very 

similar to those of Indelman and Dagan (1993a, b). 

 

3.4.5. Disadvantages 

The direct generation of block conductivities is very appealing since it puts the effort 

where it is needed, i.e. no time is spent in the generation of grids at the measurement 

scale and the later upscaling of each block, and block values are generated directly. The 

main problem of this method is that it can only be applied to blocks of uniform size and 

cannot benefit from any geometry definition algorithm. The reason is that if different 

block sizes are considered, conductivity must be considered as a different random 

variable for each block size. Introducing multiple block sizes would multiply the 

number of random variables involved and the number of covariances to determine. Only 

the analytical approaches of Rubin and Gómez-Hernández (1990) and Indelman and 

Dagan (1993a, b) which provide analytical expressions for block conductivity 

expressions, could be readily applied to multiple block sizes. 
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4. Summary 

A review of the many existing techniques for conductivity upscaling has been 

presented. The emphasis of this review has been placed on the methods. An attempt has 

been made to refer to the seminal papers of each method, and, to the best of our 

knowledge, all the existing methods for upscaling have been reviewed. 

Block conductivities are now understood as not being a material property but dependent 

on the flow conditions within the block. The observed current line of research in 

conductivity upscaling focuses on accuracy more than on speed, and on the inclusion of 

the geometry definition as an integral part of the upscaling process. The idea of direct 

simulation of block-conductivity, although attractive in concept, needs further testing 

and refinement. 
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PART 2 – UPSCALING OF TRANSPORT PARAMETERS 
 

 

A - Upscaling transport parameters under the Fickian Approach 

 

1. Basic definitions and transport processes 

Before starting any developments, it is good practice to provide the reader with a clear 

view of the context of the study and general definitions of the key terms that will be 

used. The problem of interest is the movement (or transport) of solutes in natural soils. 

While the general concept of soil is well established, the definition of soil varies, 

hinging on the perspective of the discipline employing it as a resource. In this work, soil 

will be defined as an inert material, made of aggregated solid particles in-between 

which gas and liquids are present. 

A solute is a chemical substance that dissolves in the liquid soil water phase. In this 

study, only ideal inert solutes that do not undergo decay will be considered. 

Furthermore, the solute will be assumed to be present in sufficiently low concentration 

for density effects to be neglected. No chemical process such as hydrolysis, oxydation 

or interaction with other dissolved species will be considered, nor will biological 

processes (biodegradation, biotransformation, …). The solute will be assumed to move 

in a saturated porous medium, i.e. the presence of air as a third phase will not be 

considered neither.  

Basically, three main physical processes control solute transport in the soil : advection, 

diffusion and mechanical dispersion.  

Firstly, advection is mass transport caused by bulk movement of flowing groundwater. 

If no other process occurs, then contaminant plumes are simply translated at 

groundwater velocity. The driving force is the hydraulic gradient and the average 

transport velocity  can be calculated as the Darcy flux divided by the volumetric 

proportion of mobile fluid in the soil also called effective porosity.  

The advective solute mass flux in direction i  can be written as 
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where C [g/m3] is the solute concentration. This process will play an important role in 

heterogeneous formations, where velocity fluctuations cannot be neglected. 

As spatial concentration gradients exist, diffusion is the net flux of solutes from zones 

of higher concentration to zones of lower concentration. Diffusion does not depend on 

any bulk movement of the solution and will occur even if pore water is at rest. The 

diffusive solute mass flux in direction i [g/m2/s]) can be described by Fick’s first law of 

diffusion 

 

where xi is the coordinate in direction i and Dd [m2/s] is an effective diffusion 

coefficient being related to the molecular diffusion coefficient in liquid phase. At low 

pore-water velocities, such as in clayey soils, solute transport is dominated by diffusion. 

Finally, there is a tendency for solutes to spread out from the flow lines that it would be 

expected to follow according to the advective hydraulics of the flow system, leading to 

apparent diffusion coefficients that are higher by several orders of magnitude. This 

spreading phenomenon is usually called mechanical dispersion and is caused entirely by 

differential microscopic velocities in the pore space (due, for example, to the non-

uniform velocity profile within a pore and to variations in pore diameter and in pore 

length. 

Dispersive solute flux is classically represented using a diffusion-like or Fickian law 

 

where qi
D [g/m2/s] is the dispersive solute mass flux in direction i and Dij [m2/s] is a 

second-order tensor called mechanical dispersion.  

This Fickian assumption may, most of the time, be questioned. Afterwards some 

questions about non-Fickian transport are presented. 

The solute mass transport equation can be set up by writing the mass balance on a 

representative elementary volume (R.E.V.) of soil (according to Bear’s definition) 

Combining advective, diffusive and dispersive fluxes leads to 
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Diffusion and dispersion are usually combined in a single tensor Dij
H = Dd+Dij called 

hydrodynamical dispersion. Substituting yields 

 

which is usually called the advection-dispersion equation (ADE). In this study, this 

equation will also be referred to as the classical or Fickian model of solute  transport in 

porous media. In a one-dimensional framework, it reads 

 

where  and  [m2/s] called longitudinal hydrodynamical dispersion 

coefficient, is assumed to be constant. The coefficient of mechanical dispersion is found 

to depend strongly on the advective velocity. The exact relationship between these two 

parameters can however only be obtained from theoretical considerations for simple or 

hypothetical pore systems.  Except in the case of very simple conceptual models, one 

can generally find that the coefficient of mechanical dispersion is linearly related to 

velocity 

 

where [m] is a fourth-order tensor called dispersivity assumed to depend only on 

soil properties and ||v|| is the norm of the velocity vector. In the case of an isotropic 

homogeneous medium, owing to symmetry properties, the dispersivity tensor can be 

fully described by two parameters and , respectively called longitudinal and 

transverse dispersivity, both expressed in length units. In a uniform flow field, if the 

principal directions of the dispersion tensor are aligned with the principal directions of 

the velocity flow field, one can write 

 

where  quantifies mechanical dispersion in a direction transverse to flow. 
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Extensive experimental validation of this equation has been performed. Reference 

books usually provide plots of the longitudinal dispersion versus velocity and show that 

in the laboratory, when diffusion can be neglected, this approximation is valid under 

typical groundwater flow conditions. Other studies were also conducted at larger scale. 

Klotz et al. investigated in the laboratory and in the field a more general relation 

 and found that parameter B should be close to one. They also showed 

the dependency of longitudinal dispersivity to soil sedimentological properties. 

Although supported by several theoretical models and verified under well-controlled 

laboratory conditions, the Fickian model of dispersion has shown difficulties in 

predicting solute transport under certain other conditions. Dispersion is basically an 

advective process, as it is caused by variations in fluid velocity. However, this process 

does not only take place at the pore scale, but also occurs at larger scales, ranging from 

macroscopic to megascopic. At the field scale, commonly encountered geological 

structures influence contaminant transport drastically, leading to velocity variations 

over several orders of magnitude. This includes the effects of stratification and the 

presence of lenses with higher or lower permeablity. At the megascopic scale, 

differences between geologic formations also cause non-ideality in solute transport. As 

the flow path increases in length, a solute cloud can encounter greater and greater 

variations in the aquifer, causing the variability of the velocity field to increase. Because 

dispersivity is related to the variability of the velocity, neglecting or ignoring the true 

velocity distribution (i.e. by replacing the heterogeneous medium by an equivalent 

homogeneous one) must be compensated for by a corresponding higher apparent (or 

effective) dispersivity, leading to what is commonly called the scale effect of 

dispersion. 

This scale effect first arose from the comparison of laboratory and field values of 

dispersivity. Whereas typical values of dispersivity from column experiments range 

between 0.01 and 0.1 m, values of macroscopic dispersivity (or macrodispersivity) are 

in general three to four orders of magnitude larger. It has also been widely observed that 

field-scale dispersion coefficients increase with distance and with time. 

However, it must be underlined that field dispersivity values reported in the literature 

are not always reliable. Inverse modelling is the usual tool to determine dispersivity.  
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Velocity fluctuations at different scales. a. Pore-to-pore variations. b. Stratification as a 
cause of variation. c. Randomly heterogeneous two-dimensional anisotropic medium. 
 

The latter is adjusted so that the experimental curve fits a given theoretical solution to 

the solute transport problem. When interpreting field observations of concentration, 

numerous factors, such as actual injection conditions, solute density effects or even 

temporal variations of the advective flow regime or biaised interpretation techniques, 

are likely to be interpreted as dispersion. For example, Domenico and Robbins (1984) 

showed that interpreting the two- or three-dimensional spreading of a tracer with a one-

dimensional model requires a spatially increasing dispersivity, whereas the use of a 

dimensionally correct model does not show any dispersion scale-effect. 

In studies with insufficient data, the lack of field data is hidden in the dispersion term of 

the governing transport equation. This was mostly highlighted by Gelhar et al. [1992] 

who classified results from field studies using a reliability criterion. Despite this 

criterion, they produced an experimental curve for longitudinal dispersivity versus 

measurement scale, reprinted on Fig. 1.2, clearly establishing the trend for dispersivity 
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to increase with distance. Finally, this scale effect was demonstrated using controlled 

laboratory experiments. 

 
Experimental longitudinal dispersivity values versus measurement scale with data 
classified by reliability. From Gelhar et al. [1992] 
 

In this chapter, it will be shown how transport parameters and in particular, the 

longitudinal dispersivity, can be upscaled based on different characterization methods 

for heterogeneous permeability fields. The major assumption that has to be drawn in 

this framework is that the classical Fickian transport model remains valid at every scale 

of interest, provided flow and transport parameters of the medium are properly adapted. 

Basically, this approach is equivalent to considering a macroscale R.E.V. and deriving 

equivalent macroscale flow and transport parameters. 
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Three main approaches for the upscaling of solute transport will be reviewed in this 

chapter. First, the stochastic theory will be introduced. As the literature in this domain is 

relatively abundant, we will mainly focus on the general derivation by Gelhar and 

Axness (1983). Basically, this theory shows how fluctuations in permeability results in 

an increased spreading of solute plumes.  

Then, it will be shown how fractal geometry can give an insight into macrodispersivity. 

Finally, inclusion models. They allow one to deal with a medium composed of 

inclusions of given shapes and permeabilities and solve transport considering advection 

only. 

It must be noted that the upscaling of longitudinal dispersivity is always possible in a 

deterministic framework. Assuming that the heteregeneous permeability field is fully 

determined, the corresponding transport problem can be solved at a local scale and 

apparent properties (i.e. effective transport properties of an equivalent homogeneous 

medium) are obtained by subsequent averaging at a larger scale. In the case of a 

perfectly stratified aquifer (i.e. where the permeability only depends on the elevation 

with respect to an arbitrary datum), semi-analytical methods have been developed, 

based either on moment analysis (Güven et al., 1984) or on modal analysis (Güven et 

al., 1986). 
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2. The stochastic approach 

Hydraulic properties of subsurface materials, such as hydraulic conductivity, will 

generally vary in complicated ways in space. It cannot therefore be objectively fully 

characterized in a deterministic way. However, as subsurface heterogeneity usually 

results from formation processes (such as e.g. sedimentation), it is not fully random 

neither, and (geo)statistical methods can be used to identify and characterize its spatial 

structure. Stochastic analysis enables then the variability in flow and transport to be 

related to variability and spatial structure associated to hydraulic properties of the 

heterogeneous medium considered. 

In this section several results from stochastic theories applied to solute transport in 

heterogeneous porous media will be presented. As an introduction, basics of 

geostatistics and stochastic modelling will be reviewed, and the main assumptions 

required by the method will be presented. Furthermore, tools to characterize the spatial 

structure of heterogeneous permeability fields will be presented. Then, the analytical 

expression of macrodispersivity obtained by Gelhar and Axness will be derived, based 

on an Eulerian description of the velocity field. Afterwards, a few analytical solutions to 

be used in the next chapters will be provided. 

 

2.1. Definitions and fundamental assumptions 

In a stochastic framework, the hydraulic properties of a heterogeneous medium are 

treated as random variables. A random variable R can be described in terms of its 

cumulative probability distribution function (CDF) 

€ 

FR r( ) = P R ≤ r[ ] , which denotes the 

probability that R is less than some specified value r. For a continuous random variable, 

the probability density function (PDF) can also be used to describe it, and is linked to 

the CDF using 

€ 

fR r( ) = dF dr . The mean or expected value and the variance of the 

variable R are 

€ 

µR = E R[ ] = rfR r( )dr
−∞

+∞

∫
σR
2 = E R −µR( )2[ ] = r −µR( )2 fR r( )dr

−∞

+∞

∫
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µR is a measure of the central tendency of the random variable and 

€ 

σR
2  is a measure of 

the variability associated with the variable. The squareroot of the variance is called 

standard deviation. 

A normal or Gaussian random variable is described by the PDF 

€ 

fR r( ) =
1
2πσ R

2
exp

− r −µR( )2

2σR
2

 

 
 
 

 

 
 
 
 

A normal variable is thus entirely characterized by its mean and variance. A log-normal 

random variable R is such that ln(R) is a normal random variable. In subsurface 

hydrology, and more particularly in the stochastic approach of transport in 

heterogeneous formations, hydraulic conductivity is usually assumed to be log-normally 

distributed. Therefore, one defines Y = ln(K), where the permeability K is expressed in 

[m/s] and ln is the natural logarithm. This hypothesis has the advantage that negative 

values are excluded, which is consistent with the physical requirement that permeability 

is positive. 

When we are dealing with more than one variable, it is necessary to consider how the 

variables are interrelated probabilistically. The joint CDF of two random variables R 

and S is 

€ 

F r,s( ) = P R ≤ r,S ≤ s[ ]  and the corresponding joint density probability function 

is 

€ 

f r,s( ) = ∂ 2F r,s( ) ∂r∂s. The degree of linear relationship between R and S is 

quantified by the covariance 

€ 

cov R,S( ) = E R −µR( ) S −µS( )[ ] = r −µR( ) s−µS( )
−∞

+∞

∫ f r,s( )dr ds
−∞

+∞

∫  

If R and S are independent, then the covariance is zero. However, the inverse statement 

is not correct : if the covariance is zero, then the random variables are not necessarily 

independent. They are said to be uncorrelated. Another useful tool to quantify the 

correlation of two random variables is the variogram 

€ 

γ R,S( ) =1 2E R − S( )2[ ] =σRσ S − cov R,S( )  

A random function (also called random field or stochastic process) can be viewed as a 

random variable with an infinite number of components. For instance, hydraulic 

conductivity of soils can be considered as a spatial multidimensional stochastic process 

K(x), where x is a vector of spatial coordinates. For a fixed x, the random field is a 



  
 

PAMINA Sixth Framework programme 02.28.2007 51 

random variable, and is completely characterized by its joint PDF to any arbitrary order. 

A particular record of a stochastic process (e.g. the measured permeability field in a 

given situation) is referred to as a realization of the stochastic process, whereas the 

ensemble refers to the collection of all possible realizations of the stochastic process. 

In applications related to flow through porous formations, the concept of ensemble is 

relatively abstract, as one only encounters one single realization of the process. The 

ensemble then reflects uncertainty in the depiction of the spatial structure of the 

formation, rather than a set of existing similar formations. 

Moreover, this representation relies on a finite-length record composed of discrete 

values of data measured at some interval. The statistical characterization of the random 

structure is then based on spatial averages over the single realization available, rather 

than over ensemble averages. This might not induce a high bias if the ergodic 

hypothesis prevails and the single realization considered contains the whole information 

available in each realization of the ensemble. 

Because a stochastic process is defined as a random variable at each point (in time or in 

space), the mean, the variance and the covariance are functions that may vary (in time 

or in space). In the case of the log-permeability field Y of soils, one could calculate 

€ 

µY x( ) = E Y x( )[ ] = yfY y,x( )dy
−∞

+∞

∫
σY
2 x( ) = E Y x( ) −µx

2( )[ ] = y −µY( )2 fY y,x( )dy
−∞

+∞

∫
 

where y are specified values of log-permeability. An important particular class of 

stochastic processes is that of stationary (or homogeneous) random functions for which 

both mean and variance are constant (in time or in space). One will thus have 

€ 

µY x( ) = µY   and  σY
2 x( ) =σY

2  For a second-order or weakly stationary random field, the 

covariance (which is then a function) is moreover only dependent on the separation (in 

time or in space) of the two random variables considered. 

 

2.2. Covariance function and spectral representation 

Assuming two zero-mean weakly stationary random spatial fields f(x) and g(x), their 

covariance function is noted Cfg(h) and only depends on the separation gap h (where a 

vector notation was adopted as the covariance can be dependent on the orientation, in 
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the case of a macroscopically anisotropic random field). f and g could be either 

permeabilities, heads, velocities, concentrations or any variable of interest. Cfg is either 

called the autocovariance or the crosscovariance, depending on f and g being 

representative of a same random field or not. The covariance function cannot take any 

arbitrary parametric shape. It must meet several properties, some of them being difficult 

to verify. One found therefore convenient to adopt a set of simple covariance models 

that are known to be valid. One of the most used model is the exponential covariance 

model, expressed in the one-dimensional case as 

€ 

Cfg h( ) =σ fσ g exp −
h
λ

 

 
 

 

 
  

where 

€ 

λ  is called correlation length or integral scale. Intuitively, 

€ 

λ  is a measure of the 

separation required for two random variables to become uncorrelated. Other one-

dimensional covariance models are, among others, the Gaussian and the hole-effect 

covariance function. 

€ 

Cfg h( ) =σ fσ g exp −
h
λ
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Next figure illustrates these different models (in the case of autocovariance Cff ) and 

shows one realization of a corresponding stochastic process. Basically, the exponential 

model can be used to model small-scale sharp variability, whereas the Gaussian model 

produces softer variations and mild transitions. The hole effect model can be used to 

represent alternating sequences, such as stratification If a process is stationary, it is 

virtually always possible to describe it in terms of its frequency content, which is 

accessible through a Fourier-transform of this process. The Fourier-transform of the 

covariance function is called the power density spectrum (or spectral density function), 

is noted Sfg, and is evaluated according to 

€ 

S fg s( ) = ˜ f s( ) ˜ g * s( ) = C fg h( )
−∞

+∞

∫ exp −2πih ⋅ s( )dh  

where s is the wave number (that has the same number of dimensions as x), 

€ 

˜ f s( )  is the 

Fourier-transform of function f(x) and 

€ 

˜ g * s( )is the complex conjugate of the Fourier-
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transform of function g(x). Inversely, the covariance function can be obtained from the 

inverse Fourier-transform of the spectral density function 

€ 

Cfg h( ) = S fg s( )exp 2πih ⋅ s( )ds
−∞

+∞

∫  

 

 

Models of covariance and one realization of a corresponding random field 

 

2.3. Eulerian derivation of macrodispersion 

In this section, the general three-dimensional derivation of macrodispersion performed 

by Gelhar and Axness will be shortly summarized, following the lines of Gelhar and 
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Cirpka. The starting point is the advection-dispersion equation, expressed with a 

constant local hydrodynamical dispersion tensor 

€ 

Dij
H  and assuming that concentration 

and migration velocity are stationary random functions. 

€ 

C = C + ′ C 
v = v + ′ v 

 

where bold symbols are vectors. 

€ 

C , v , ′ C  and ′ v  are respectively mean concentration, 

mean velocity, concentration fluctuation and velocity fluctuation. Fluctuations are 

assumed to have a zero mean 

€ 

′ C = ′ v = 0 . Substituting these expressions, taking 

expected values and dropping higher-order terms, yield the governing equation for the 

mean concentration  

€ 

∂ C
∂t

= − vi
i
∑ ∂ C

∂xi

− E vi
′ ∂ ′ C 
∂xii

∑
 

 
 

 

 
 +

∂
∂xi

Dij
H ∂ C
∂x jj

∑
i
∑  

Considering the classical advection-dispersion equation, a new term arises here. It 

reflects additional mass transport due to correlation between specific discharge and 

concentration fluctuations. It produces a large-scale dispersion effect and can be 

approximated using a Fickian-like law 

€ 

E ′ v i
∂ ′ C 
∂xii

∑
 

 
 

 

 
 =

∂
∂xi

′ v i ′ C 
i
∑ ≈−

∂
∂xi

Dij
* ∂ C
∂x j

 

 
  

 

 
  

j
∑

i
∑  

€ 

Dij
*  is the macrodispersion tensor and is assumed to be proportional to the absolute 

value of migration velocity, as for the local dispersion tensor. It can be evaluated using 

the governing equation of concentration perturbations. The latter is obtained by  

€ 

∂ ′ C 
∂t

+ ′ v i
∂ C
∂xi

+ vi
∂ ′ C 
∂xi

 

 
 

 

 
 

i
∑ −

∂
∂xi

Dij
H ∂ ′ C 
∂x j

 

 
  

 

 
  =

∂
∂xi

′ v i ′ C − ′ v i ′ C ( )
i
∑

j
∑

i
∑ ≈ 0 

This approximation is of crucial importance. Basically, it implies that velocity 

fluctuations are sufficiently small for second-order products to be neglected. For a log-

normal permeability field, it can be shown based on a similar stochastic analysis of the 

flow equation that this condition on velocity perturbation requires a small variance of 

the Y field, so that it can be linearized. Typically, these developments are assumed to be 

valid for 

€ 

σY
2 <1 
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In general, these equations must be solved simultaneously. However, a decoupling can 

be accomplished provided that concentration fluctuations occurs at a much smaller scale 

than variations associated to the mean concentration. It is then possible to solve it to 

evaluate the macrodispersive flux and subsequently substitute it in the equation. 

Assuming that the mean flow occurs in direction i=1 and using the notations introduced  

simplifies to 

€ 

∂ ′ C 
∂t

= − ′ v 1∇ C − v1
∂ ′ C 
∂x1

+ DL
∂ 2 ′ C 
∂x1

2 + DT
∂ 2 ′ C 
∂x2

2 + DT
∂ 2 ′ C 
∂x3

2  

where the notation 

€ 

∇ C  indicates that the gradient of the mean concentration is 

assumed to be constant in time and in space. This assumption may not be very realistic. 

But a mean gradient hardly varying over several correlation lengths of the hydraulic 

conductivity field may be achieved in the large-time limit under ordinary flow 

conditions, allowing one to apply the theory derived here in field conditions. 

Las equation may be transferred into the Fourier-space. Using some basic properties of 

the Fourier-transform, one obtains 

€ 

d
dt

+ b
 

 
 

 

 
 ′ ˜ C s( ) = − ′ ˜ v 1 s( )∇ C  

where ˜ indicates the Fourier-transform and where 

€ 

b = 2πi v1 s1 + 4π 2DLs1
2 + 4π 2DT s2

2 + s3
2( )  

This is a linear non-homogeneous first-order time differential equation. Since the 

concentration gradient is taken as a constant and assuming as initial condition a 

concentration distribution equal to the mean concentration (i.e. a concentration 

perturbation C’ = 0), one obtains 

€ 

˜ ′ C s,t( ) = − ˜ ′ v 1 s( )∇ C exp b τ − t( )( )0

t
∫ dτ = −

˜ ′ v 1 s( )∇ C
b

1− exp −bt( )( )  

To compute the longitudinal apparent dispersion coefficient it can be used 

€ 

DL
* = −

1
∇ C

′ C ′ v 1  
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As 

€ 

′ C ′ v 1  is the integral of the cross-spectral density of concentration and longitudinal 

velocity fluctuations 

€ 

SCv1 , last equation can be transformed into 

€ 

αL
* t( ) =

1
v1

1− exp −bt( )
b−∞

+∞

∫ ˜ ′ v 1 s( ) ′ ˜ v 1
* s( )ds =

1
v1

1− exp −bt( )
b−∞

+∞

∫ Sv1v1
s( )ds 

This equation establishes the link between velocity fluctuations and macrodispersivity. 

As the velocity spectrum is linked to log-permeability variations, macrodispersivity is 

basically found to be dependent on the permeability field. Moreover,macrodispersivity 

is also proved to be time-dependent and vanishes for large time, macrodispersivity 

converges to a constant asymptotic value. 

Similar derivations have been performed by Dagan and by Neuman et al. Dagan used a 

Lagrangian framework, but had to use an approximate relationship between the Eulerian 

and the Lagrangian velocity covariance. Neuman et al. used a more abstract 

mathematical analysis based on semigroup theory. Basically, these derivations all 

require an assumption of relatively small perturbations, leading to little discrepancy 

among them and a domain of validity 

€ 

σY
2 <1. 

 

2.4. A few analytical solutions 

Most of available analytical solutions are based on exponential covariance models and 

assume that local dispersivities are negligible compared to correlation lengths. The 

asymptotic value of longitudinal dispersivity in an isotropic medium is given by  

€ 

αL
* ∞( ) =σY

2 λ
γ 2

 

where 

€ 

γ  is a flow factor accounting for the dependence of effective permeability on 

dimensionality. In the two-dimensional case, 

€ 

γ  = 1, whereas in the three-dimensional 

case, 

€ 

γ = exp σY
2 6( ) . It must be noted that Dagan obtained a similar result using a 

Lagrangian framework, but with 

€ 

γ  = 1 in the three-dimensional case. Dagan states that 

taking into account a value 

€ 

γ ≠1 is not consistent with first-order approximations 

adopted, as it introduces a term of order 

€ 

σY
4 . 
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Fig. 2.2 depicts the influence of the variance of the log-permeability field on the 

asymptotic value of longitudinal apparent dispersivity. 

 

 

The three-dimensional isotropic solution for intermediate times is given by Gelhar, 

based on an expression derived by Dagan 

€ 

αL
* t( )

αL
* ∞( )

=1− 4
ξ 2

+
24
ξ 4

− 8 1
ξ 2

+
3
ξ 3

+
3
ξ 4

 

 
 

 

 
 exp −ξ( )  

where 

€ 

ξ = v1 t λ . In a two-dimensional isotropic aquifer, it is given by 

€ 

αL
* t( )

αL
* ∞( )

=1− 3
2ξ

+
3
ξ 3

−
3
ξ 2

1+
1
ξ

 

 
 

 

 
 exp −ξ( )  

Basically, these results express that the convergence to the asymptotic behavior is only 

controlled by the ratio of mean travel distance to correlation length. 

In the two-dimensional case, as the number of available paths to bypass low 

permeability zones is lower than in the three-dimensional case, convergence is less 

rapidly reached (Fig. 2.3). 

In the case of a two-dimensional anisotropic situation with flow occuring in a direction 

at an angle 

€ 

θ  with respect to the bedding of the permeability field, asymptotic 

dispersivity is given by 
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€ 

αL
* ∞( ) =σY

2 λ1λ2
γ 2 λ1

2 sin2θ + λ2
2 cos2θ

 

where the flow factor is obtained from 

€ 

γ =
exp σY

2 1 2 − g22( )[ ]
sin2θ + Bcos2θ

 

with 

€ 

B = exp σY
2 g11 − g22( )[ ],  g11 = λ2 λ1 + λ2( )  and g22 = λ1 λ1 + λ2( ) . 

Fig. 2.4 shows the effect of anisotropy on asymptotic longitudinal dispersivity. For high 

variance and high anisotropy, flow is mainly directed in the longitudinal direction and 

little transverse mixing can occur, leading to lower values of longitudinal dispersivity. 

As anisotropy decreases, transverse mixing increases, leading to higher apparent 

longitudinal dispersivities. Fig. 2.5 shows that, globally, when flow is not aligned with 

the main principal direction of the permeability field, apparent dispersivity tends to 

decrease. No analytical solution for transient apparent dispersivity in two-dimensional 

anisotropic situation could be found.  

 

The perfectly stratified case could be obtained under appropriate conditions 

€ 

λ1 →∞,λ2 →∞ and finite λ3( ) . However, a separate but similar analysis was conducted 

by Gelhar et al. They assumed a normal permeability distribution (instead of a log-

normal one) and obtained 

€ 

αL
* =

SKK s( )
K 2

1− e−αT vts
2

αT s
2−∞

+∞

∫ ds 



  
 

PAMINA Sixth Framework programme 02.28.2007 59 

in which SKK(s) is the power density spectrum of the hydraulic conductivity 

field, characterized by an integral scale 

€ 

λ . 

Three different regimes can be identified. At early times, transverse spreading has not 

caused any mixing yet and solute particles remain on their initial flow line. The 

concentration distribution behaviour is fully controlled by longitudinal advection and 

apparent longitudinal dispersivity varies linearly in time 

€ 

αL
* →

σK
2

K 2 vt t→ 0  

After some time, spatial concentration gradients appear due to transverse velocity 

variations, causing diffusion and dispersion of particles from their initial flow line. 

Particle velocities then change according to their new flow line, and new concentration 

gradients appear, causing new transfers of particles between flow lines. For intermediate 

times, transverse transport processes have ensured mixing over the respective layer 

thicknesses (or over the integral scale

€ 

λ ), but not over the overall aquifer thickness. In 

this case, it can be shown that longitudinal dispersivity increases according to the 

square-root of time. The third regime corresponds to full mixing of the solume plume 

over the aquifer thickness. This regime was first investigated by Taylor and Aris for 

laminar flow through a tube, with a deterministic velocity distribution. 

They showed that in this regime, commonly referred to as the Taylor dispersion regime, 

the dispersive flux is Fickian with a constant asymptotic apparent dispersivity. In the 

stochastic approach of solute transport in perfectly layered soils, this regime only exists 

provided the covariance function of the permeability field is properly chosen. Using a 

hole-effect covariance model, Gelhar et al. obtained 

€ 

αL
* ∞( ) =

1
3
σK
2

K 2
λ2

αT

 

Asymptotic apparent longitudinal dispersivity is directly proportional to the variance of 

the ln(K) field (as 

€ 

σK
2 K 2

≈σY
2 ) but depends on the square of the correlation length. 

Moreover, its value is inversely proportional to the magnitude of transverse mixing. 
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3. Fractal models of heterogeneity 

The main feature of a fractal object is that its degree of irregularity is independent of the 

scale. As long as one watches it closer and closer, new small-scale irregularities appear, 

although it is not possible to detect them from a larger-scale point of view. In normal 

Euclidian geometry, the length L of a line can be calculated with 

€ 

L = nε 

where n is the number of length units 

€ 

ε. If the size of 

€ 

ε is diminished by 2, then the 

number of measuring units n increases by 2, keeping the length constant. 

Many natural objects do not behave according to this simple relationship.  It has been 

found that, in the case of fractal lines such as coastal lines, 

€ 

F = nεd  

where F is a measure of the fractal line length (which, contrary to L, is not expressed in 

[m] but in [md]) and d is the dimension in which one has to measure the line length in 

order to obtain a constant value for F. d is called the fractal dimension. In the case of a 

line, this parameter may vary from 1 to 2. If d = 1, the measured line is geometrically 

simple, whereas if d = 2, the line is so irregular that it completely fills a plane. 

Combining equations leads to 

€ 

L ε( ) = Fε1−d  

which describes the dependence of a measured length with the measurement unit 

€ 

ε, 

according to fractal length F and fractal dimension d. 

 

3.1. Application to solute transport 

Fractal geometry was first introduced by Wheatcraft and Tyler to describe solute 

particle travel paths in heterogeneous media. However, as the Euclidian length of a 

fractal line increases without bounds as long as the measurement unit decreases, particle 

travel path cannot be fully fractal. Indeed, water flow does not exactly follow the shape  
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of the soil grains, otherwise some particules would have an infinite travel time. A cutoff 

limit 

€ 

εc  was then introduced for the measurement unit, this limit being comprised 

between a mean pore size and the size of the R.E.V. for the smallest heterogeneity. 

In a single fractal streamtube, if xF is the actual distance travelled by a particle (in [m]) 

and if xS is the longitudinal straight-line distance travelled by this same particle (also 

expressed in [m]), one has 

€ 

F = xS
d  

where the measurement unit is equal to the straight-line path. Substituting this 

relationship and measuring at the fractal cutoff limit leads to 

€ 

xF = εc
1−d xS

d  

which can be viewed as a scaling relationship between measurement scale xS and real 

particle travel path xF . This is illustrated in Fig. 2.6. If measurement scale is divided by 

2, if particle travel path is fractal, it is not divided by 2 but by 2d. 
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Provided the Fickian model is valid at some local scale, the spreading of a dissolved 

particle cloud in space, expressed as the variance of the particle position 

€ 

σC
2 = E X − X( )2[ ] , is given by 

€ 

σC
2 = 2αL xF  

 where 

€ 

αL  is the local longitudinal dispersivity. This variance can also be expressed in 

terms of measured variables 

€ 

σC
2 = 2αL

* xS  

where 

€ 

αL
*  is the measured (apparent or effective) longitudinal dispersivity. Using this 

expression we obtain 

€ 

αL
* =αLεC

1−d xS
d−1 

which allows the upscaling of longitudinal dispersivity based on a fractal description of 

the heterogeneous medium. For an homogeneous non-fractalmedium (d = 1), field-scale 

dispersivity remains equal to local dispersivity. Wheatcraft and Tyler and Zhou and 

Selim extended this latter equation to transport in a soil composed of a set of fractal 

streamtubes. However, this approach is rather conceptual, and one could expect a real 

aquifer to behave somehow differently than a set of disconnected fractal streamtubes. 

Zhan and Wheatcraft proposed another approach, combining fractal geometry and 

spectral analysis, that could be more adapted to real field-scale situations. 

 

3.2. Fractal geometry and spectral analysis 

Whereas classical stochastic approaches involve ln(K) covariance functions that have a 

finite correlation length, in order to have a rapid decrease of hydraulic conductivity 

autocorrelation this assumption is not necessary anymore when using concepts of fractal 

geometry. Zhan and Wheatcraft proposed to use a power-law covariance model 

€ 

CYY = h 2H  where 0 < H < 1 is called Hurst coefficient and link with the fractal 

dimension according to H = 1+eu−d (eu being the Euclidian dimension). H=1 

corresponds thus to a non-fractal medium. 
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For this type of heterogeneity, Fickian behaviour will never be achieved if the aquifer is 

not bounded, and longitudinal macrodispersivity will monotonically increase with 

plume scale to infinity. However, for most geological formations, physical boundaries 

always exist. A generally encountered situation is that noflow boundaries enclosing the 

fractal porous medium define the field scale at which contaminants will disperse. Zhan 

and Wheatcraft then introduced a macroscale cutoff limit Lm, having the same role as 

the correlation length used in classical stochastic analysis, but being linked to a physical 

boundary rather than to the structure of the permeability field. 

Zhan and Wheatcraft showed that, in the case of a stratified fractal aquifer, asymptotic 

macrodispersivity can be computed from 

€ 

αL
* ∞( ) =

σY
2

αT

2 − d
3− d

Lm
2π
 

 
 

 

 
 
2

 

where 1 < d < 2 and Lm is representative of the aquifer thickness. 

Relative macrodispersivity can be computed according to 

€ 

αL
*

αL
* ∞( )

=1− exp − ξ

2π( )2
 

 
 
 

 

 
 
 
+

1
2 − d

ξ

2π( )2
exp − ξ

2π( )2
 

 
 
 

 

 
 
 
−

1
2 − d

ξ

2π( )2
 

 
 
 

 

 
 
 

3−d

Γ d −1, ξ

2π( )2
 

 
  

 

 
   

where 

€ 

γ =1 and γ =1+σY
2 6  in two and three-dimensional cases respectively. 

Fig. 2.7 shows the dependency of asymptotic dispersivity on Hurst coefficient for two- 

and three-dimensional problems. These results are qualitatively consistent with results 

from stochastic theories, as an increase in the correlation of the medium (i.e. an increase 

of the Hurst coefficient or an increase of the correlation length) results in a higher 

asymptotic longitudinal apparent dispersivity and that an increase in the Euclidian 

dimension of the problem results in a decrease of the dispersivity. It should be noted 

that a totally fractal medium (H = 0) yields a macroscopic dispersivity equal to zero, 

which is again consistent with stochastic theories (

€ 

αL
* = 0 for λ = 0) but contradictory 

with results of streamtubes models developed in the previous section.  

Fig. 2.8 shows the transient development of apparent longitudinal dispersivity in the 

case of a perfectly stratified aquifer. 
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In the anisotropic case, Zhan and Wheacraft also developed two and three-dimensional 

analytical solutions for asymptotic apparent dispersivity.  
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4. Inclusion models 

Transport in aquifers made of inclusions of highly contrasted permeabilities has only 

been very recently investigated. Desbarats performed pioneering numerical simulations 

using a binary medium with inclusions of low permeability and showed that 

permeability contrast and inclusion volumetric proportion were the main controlling 

parameters for transport. Rubin proposed a first-order stochastic approach and derived 

analytical results in the case of bimodal isotropic media. Like other results from 

stochastic theories, Rubin’s results are only valid for low permeability contrasts. Eames 

and Bush and later Dagan and Lessoff and Lessoff and Dagan studied transport 

properties of two- and three-dimensional bimodal fields composed of inclusions of fixed 

size and of constant permeability, disposed at random in an homogeneous matrix. Their 

developments were conducted under the assumption of low volumetric proportion of 

inclusions (i.e. in the dilute system limit) so that advective transport could be solved by 

isolating one inclusion and the dispersive effect of a collection of lenses was determined 

subsequently in a simple additive manner. Dagan et al. and Fiori et al. further refined 

the analysis by considering distributions of ellipses of different size and of different 

permeabilities, and by computing the transient development of apparent dispersivity. 

They released the dilute system approximation by considering instead the selfconsistent 

approach, in which the flow and transport problems are solved for a single inclusion 

embedded in a equivalent homogeneous medium replacing the neighbouring inclusions. 

However, they limited their analysis to isotropic media and compared the results with 

numerical simulations. Dagan and Fiori and Fiori and Dagan studied transport 

properties of media with composite inclusions, that allowed them to derive results 

without relying neither on the dilute system nor on the self-consistent approach. 

However, they also conducted their analysis in the isotropic case. Fiori et al. and 

Jankovic et al. performed extensive numerical simulations on bimodal isotropic medium 

for different volumetric proportions of inclusions (ranging from 5 to 40%) and for 

different permeability ratios (ranging from 0.01 to 10). They found that the self-

consistent approach could be reasonably adopted in each of their tested case. 
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In this section, it is thus proposed to further study the model suggested by Dagan et al. 

developped under the self-consistent approximation, and to extend it to anisotropic 

formations using the results proposed by Dagan and Lessoff  and Lessoff and Dagan. 

 

4.1. Conceptual model 

Dagan et al. have suggested to model heterogeneous formations as multiphasic ones, 

made up of M types of block geometry and of N different types of material. Blocks are 

assumed not to overlap (Fig. 2.11 a.). A point of the medium lies in the block i, j of 

shape i (i = 1 . . .M) and of material j (j = 1 . . .N) with a known probability pij . pij thus 

denotes the volumetric proportion of blocks of size i and of material j in the medium. 

Centroid positions of blocks xij are however not known and are treated as random 

variables. 

 

 

 

 

If Kj is the permeability of material j, the overall conductivity field is given by  

€ 

K x( ) = KkI x − x ij( )
j
∑

i
∑  
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where the indicator function 

€ 

I x − x ij( ) is equal to 1 for x belonging to the inclusion (i, j) 

and is equal to zero otherwise. It is emphasized that permeabilities of two neighbouring 

blocks remain uncorrelated. Mean and variance of the log-permeability field can be 

computed from 

€ 

ln Kg( ) = pijm j
j
∑

i
∑

σY
2 =

1
2

m j −mk( )
2
pij pik

k≠ j
∑

j
∑

i
∑

 

where mj = ln(Kj). The variance of such media can be very high, well above the 

classical limit 

€ 

σY
2 <1 established for the validity of first-order stochastic theories. 

To further simplify the model, Dagan et al. propose to represent blocks as inclusions of 

regular size, such as ellipses or spheroids, and to assume that they are submerged in a 

matrix of arbitrary conductivity K0 to be determined below (Fig. 2.11 b.). Dagan et al. 

state that, despites these limitations and provided the distribution of sizes and 

permeabilities is properly chosen, this type of permeability field can properly mimic any 

given permeability distribution and any two-point anisotropic covariance function. 

In a given heterogeneous formation of this geometry, the solution of the flow field can 

be represented as a distribution of singularities of source type, each source 

corresponding to a given block. The self-consistent approach proceeds by isolating one 

inclusion of shape i and permeability Kj and by suppressing the remaining ones in the 

matrix of permeability K0 (Fig. 2.11 c.). The flow and transport problems are then 

solved assuming there is no interaction between each block. As K0 could be any 

reference permeability somehow linked to the effective permeability Ke of the medium, 

the self-consistent approach assumes K0=Ke and K0 reflects the presence of 

neighbourings blocks that have been suppressed. The derivation of Ke for two- and 

three-dimensional isotropicmedia is given by Dagan and extended to three-dimensional 

anisotropic media. 

 

4.2. Advective transport by the Lagrangian approach 
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Under ergodic condition, the spatial moments of a solute plume can be computed from 

the statistical moments of the trajectory of a single particle. One will then consider a 

solute particle injected at time t = 0 and at position x0. 

The trajectory of this particle is x = X(t, x0) and is given by 

€ 

X t,x0( ) = x0 + Vt + ′ X ij
j
∑

i
∑  

where V is the far field velocity and 

€ 

′ X ij  is the trajectory fluctuation caused by block 

(i,j). Trajectory second moments are given by 

€ 

Xms t( ) = E ′ X ij,m x0 − x ij( ) ′ X ij,s x0 − x ij( )[ ]
j
∑

i
∑  

where m and s refer to the components of the vectors of the trajectory fluctuations. 

Details of the computation method are given by Lessoff and Dagan and by Fiori et al. 

 

 

 

Figs. 2.12 to 2.15 show the behaviour of the asymptotic dispersivity for a two-facies 

permeability field (facies 1 and 2) of varying permeability contrast, anisotropy ratio and 

volumetric proportion. Each point on these figures requires computation of effective 

permeability and computation of asymptotic dispersivity. It appears that for equal 

volumetric proportion of facies, curves are symmetric. For higher anisotropy ratio, 
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apparent longitudinal dispersivity incresases, which is in accordance with results 

obtained by Lessof and Dagan under the dilute assumption. When the medium is mainly 

composed of a low-permeability facies, apparent dispersivity increases when 

permeability decreases. However, as discussed qualitatively by Dagan and Lessoff and 

Dagan et al., the behaviour for low permeability inclusions is altered by transverse 

dispersivity and molecular diffusion, which provide a cutoff in asymptotic longitudinal 

macrodispersivity. 

When the medium is predominantly composed of high permeability inclusions, apparent 

dispersivity converges to a constant value for increasing permeability. Apparent 

dispersivity is maximum for a volumetric proportion of inclusions close to 50 %. 
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5. Conclusion 

In this chapter, three methods for the upscaling of longitudinal dispersivity in 

heterogeneous media were detailed. These methods allow one to compute apparent (or 

effective) values of longitudinal dispersivity to be used in the ADE for an equivalent 

homogeneous medium. 

The stochastic method is relatively popular but is bound to a strong limitation of low 

permeability variability. The other limitation of this method is that it is based on a 

statistical characterization of the permeability field. This characterization ideally 

requires vast amounts of data, that are generally not available in field-scale problems.  

The fractal method that has been presented does not require an assumption low 

variability. However, it basically requires similar characterization methods as the 

stochastic approach, as the transport problem is parametrized using a covariance 

function for the permeability field and a large scale cutoff distance. Finally, the self-

consistent approach allowed one to derive apparent dispersivity values in the case of 

highly heterogeneous media. The main limitation of this approach is that diffusive and 

local-scale dispersive transport are not considered, which might induce a serious bias 

when considering media with relatively low permeabilities. 

The basic approach for modelling large-scale solute transport consists then to use the 

upscaled dispersion coefficients in the classical advection-dispersion equation and solve 

it at the scale of interest. However, as the time needed to reach the asymptotic large-

scale Fickian behavior turns out to be extremely long, the assumption of a constant 

macrodispersion coefficient can still be questionable in most of the case. The remaining 

solution consists in solving the ADE with time- or space-dependent dispersion 

coefficients, either numerically or analytically. 
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Upscaling transport parameters under the non-Fickian Approach 

 

1. Introduction 

The question of how to quantify contaminant transport in porous soils and rock has been 

the focus of research over several decades in hydrology, as well as in the closely related 

disciplines of soils science and petroleum engineering. Landmark tracer breakthrough 

experiments, dating mostly from the 1950s and 1960s, formed the basis for theoretical 

developments and analyses that considered almost exclusively the classical advection-

dispersion equation (ADE). The ADE, and variants thereof, have continued to be used 

to this day as the principal means for considering and quantifying tracer transport in 

porous media. 

However, just how suitable is the ADE framework for describing tracer transport in 

porous media? Even early pioneering experiments reported the occurrence of systematic 

errors in fitting breakthrough curves (BTCs) using the classical ADE. In a series of 

careful and well-documented column experiments, Scheidegger (1959) observed that 

deviations in fits of the ADE to the BTCs could not be explained simply by the usual 

variability (error) in experimental measurements. Scheidegger (1959, p.103) stated: 

“The deviations are systematic which appears to point toward an additional, hitherto 

unknown effect.” Aronofsky and Heller (1957) also analyzed published tracer 

experiments and reported that systematic deviations arise between measurements and 

predictions using the ADE. Indeed, over the last 4 decades several other studies have 

pointed out some specific and serious inadequacies in the applicability of the classical 

ADE, even with small-scale laboratory experiments on homogeneous samples. Silliman 

and Simpson (1987) demonstrated convincingly in laboratory experiments the scale 

dependency of the dispersivity coefficient; this is in a stark contrast to the fundamental 

assumption that the dispersivity is a constant derived from the microgeometry of the 

porous medium. Such scale-dependent behaviour is typical of “non-Fickian” or 

“anomalous” transport. These issues are by no means limited to laboratory-scale 

experiments. Deviations from the classical ADE behaviour are even more significant in 

natural systems. 



  
 

PAMINA Sixth Framework programme 02.28.2007 72 

 

While the ADE can treat “homogeneous” porous media under some conditions, such 

homogeneity rarely, if ever, exists. The heterogeneity of natural geological formations 

at a wide range of scales necessitates consideration of more sophisticated transport 

theories. Why is the conceptual picture underlying the classical ADE formulation 

limited? What is missing from this picture describing the transport behaviour of a 

contaminant in a natural porous medium? The answers to these questions lie in the basic 

recognition that in all geological formations, heterogeneities are present at all scales, 

from the submillimeter pore scale to the basin scale itself. We emphasize that the term 

“heterogeneities” can refer o variations in the distribution of the geometrical properties 

(e.g., porosity and hydraulic conductivity), as well as to variations in the 

biogeochemical properties of the medium, all of which can affect tracer transport. 

Three points of conceptual understanding can be drawn immediately from this fact: 

(1) The high degree of variability in these heterogeneities rules out, a priori, the 

possibility of obtaining complete knowledge of the pore space in which fluids 

and contaminants are transported 

(2) The paths travelled by a contaminant in an aquifer are strongly influenced by the 

heterogeneities of the geological formation, as well as by the initial and 

boundary conditions (BCs), which determine the underlying flow field. 

(3) Tracer migration is sensitive o heterogeneities at all scales, so that we should not 

be surprised that small-scale heterogeneities can significantly affect large-scale 

behaviour. 

The key consequence of these points is a critical consideration of the idea of 

“homogeneity” of the medium for the purposes of modelling transport and/or defining 

“effective” transport parameters. It has been shown that even carefully packed, 

laboratory-scale flow cells and columns containing porous media contain 

“heterogeneities”. Studies using magnetic resonance imaging to visualize flow 

conditions within “homogeneous” geological materials in laboratory-scale, column 

experiments report the existence of preferential flow paths, wich strongly influence both 

water flow and tracer transport (e.g., Hoffman et al., 1996; Oswald et al., 1997). These 
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paths occur because of the presence of macrostructures (caused, e.g., from bridging 

effects) as well as by microstructures that reflect grain-size heterogeneities. 

 

At the field scale the issue of “homogeneization” of course arises. Do the above 

mentioned laboratory-scale heterogeneities simply average out and become insignificant 

at large scales? If so, how large is “large”? As already noted above, heterogeneities are 

present at all scales. Thus, for example, the existence of preferential flow paths has been 

reported even in apparently “structureless” soils at the field scale (e.g., Ghodrati and 

Jury, 1992). 

The nature of contaminant transport in geological materials is thus linked inextricably to 

the extent and scale dependence of heterogeneities. The transport that is anomalous, or 

non-Fickian, occurs when the contaminant encounters, at each scale, a sufficiently broad 

spectrum of velocities and stagnant areas resulting from the heterogeneities. In addition 

to the strong influence of preferential flow paths and slow flow or diffusion-dominated 

regions, tracers can, in many cases be affected by biogeochemical heterogeneities; these 

heterogeneities enable a wide range of reaction processes that (temporarily or 

permanently) delay the advance of a tracer. Non-Fickian behaviour is fundamentally 

different from fickian transport, which is the usual assumption invoked, explicitly or 

implicitly, for application of the classical ADE and many of its variants. These other 

treatments, and many stochastic approaches, focus on definition of an effective 

“macrodispersion” parameter at any given scale of interest. This issue is discussed in 

detail below. 

The concept of anomalous transport was first introduced by Montroll and Scher (1973) 

and Scher and Montroll (1975) and has subsequently been shown to have ubiquitous 

applicability to transport and diffusion in disordered systems. The original application 

of the concept and its quantitative predictions (Scher and Montroll, 1975) was in the 

field of electronic transport in amorphous semiconductors (Tiedje, 1984) and in 

polymeric media (Bos and Burland, 1987) where it was well confirmed by an extensive 

number of experimental studies. Subsequent use of these ideas expanded into many  
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Fig. 1.- Photographs of a homogeneous, saturated sand pack with seven dye tracer point 
injections being transported, under constant flow of 53 mL/min, from left to right. 
Times at (a) t=20, (b) t=105, (c) t=172 and (d) t=255 min after injection.  
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Internal areas, e.g., the anomalous diffusion of defects as a basis for the universal 

stretched exponential relaxation behaviour in a diverse number of materials (Shlesinger, 

1988). The present application to contaminant transport in geological formations is a 

uniquely rich example, as the full chemical plume and BTCs can be measured directly; 

this application has represented a new level of confirmation and further development of 

the theory. 

Here and throughout, we use the term “anomalous” and “non-Fickian” interchangeabily 

to denote any transport which differs from that described by the classical ADE. The 

ADE describes Fickian behaviour in the sense that mechanical dispersion is assumed to 

be quantifiable by a macroscopic form of Fick’s law, and the resulting temporal and 

spatial concentration distributions of an initial pulse are equivalent to a normal, 

otherwise known as a Gaussian, distribution. 

To illustrate just how frequently non-Fickian transport occurs, consider tracer migration 

through an “homogeneous”, fully saturated sand pack. As indicated above, preferential 

paths for fluid flow and tracer transport are present even in these conditions, as shown, 

for example in Figure 1. 

dimensions of the flow cell are 86 cm (length), 45 cm (height) and 10 cm (width). 

Reprinted from Levy and Berkowitz (2003) 

Contrary to Fickian transport the individual dye plumes are not symmetrical ellipses, 

nor are the different plumes identical to each other. Moreover, measurements of tracer 

BTCs in such ”homogeneous”, meter-length flow cells have been shown to display 

“anomalous” early time arrivals (i.e., later than Fickian) and late time tails [Levy and 

Berkowitz, 2003]. Detailed analysis (see section 3.4.2) shows that the motion and 

spreading of these chemical plumes are characterized by distinct temporal scaling; that 

is, the time dependence of the spatial moments does not correspond to a normal (or 

Gaussian) distribution. In sections 2–5 we discuss the Continuous Time Random Walk 

(CTRW) approach to these transport phenomena, and in sections 6 and 7 we contrast it 

with other approaches that have been fully discussed in the literature. 
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2. Continuous Time Random Walk Framework  

 

Two well-studied, generic geological media that possess heterogeneities on a very wide 

range of spatialscales are porous sedimentary rock and ‘‘random’’ fracture networks 

(RFN) in low-permeability rock. At the field scale a reasonable definition of the 

macroscopic characteristics (e.g., individual facies) of these geological formations can 

be feasible, thus enabling, at a sufficiently coarse resolution, modeling of flow and 

transport conditioned on these features. 

However, in practice, there is always some scale, λ, below which (y < λ) heterogeneities 

are unresolved. The omnipresent question is, Can one justify the use of average local 

properties (e.g., mean velocity and dispersion) at the scale λ, or does the range of 

unresolved heterogeneities y < λ have a key influence on overall transport behaviour? 

The answer is very often a practical one, not an intrinsic one, depending on the width of 

the distribution of material properties for y < λ. 

To account for the effect of a sufficiently broad (statistical) distribution of material 

properties (e.g., of permeabilities) on the overall transport, one must consider a 

probabilistic approach that will generate a probability density function (pdf) describing 

key features of the transport. 

This pdf, denoted 

€ 

ψ s,t( ), is discussed thoroughly starting in section 2.3. The effects of 

multiscale heterogeneities on contaminant transport patterns are significant, and 

consideration only of the mean transport behaviour, e.g., the spatial moments of the 

concentration distribution, is not sufficient. 

An essential input to the calculation of the field-scale transport is the plume motion 

and/or BTC across the λ scale. The CTRW is a probabilistic approach for calculating 

the latter based on a pdf of transition times (see section 2.1) generated by the range of 

heterogeneities. The nature of the transport, non-Fickian or Fickian, is determined by 

the functional shape of the pdf. 



  
 

PAMINA Sixth Framework programme 02.28.2007 77 

 

2.1. Conceptual Picture. Tracer Transitions 

Contaminant motion in geological formations can be treated by considering particles 

(which represent, e.g., dissolved solutes) undergoing various types of transitions. These 

transitions encompass both the displacement due to structure and heterogeneity as well 

as the time taken to make the particle movement between, e.g., pores or fracture 

intersections. We conceptualize transport as a series of such particle transitions with a 

focus on retaining the full distribution of the transition times.  

The variability in the hydraulic and geochemical properties of the geological domain 

cause a variety of particle transitions at velocity changes within the flow field, between 

flowing and stagnant zones, between mobile and immobile states, between macropores 

and micropores, between fractures and adjacent host rock, and by changes in advective 

paths at fracture and macropore intersections. This picture of motion by transitions will 

be referred to as “CTRW theory”, whereas the mathematical formalism used to 

implement the motion will be called the “CTRW framework.” 

Each transition can be quantified as

€ 

w s, ′ s ( ) , the rate of particle transfer to position s 

from 

€ 

′ s , and can be considered on any spatial scale, e.g., on a pore scale between pore 

positions through an interpore throat (i.e., a ‘‘tube’’). A multiple rate approach 

considers the range of these rates {w}. At this point one can see the basic problem in 

working with average rates in some representative region or volume, traditionally 

referred to as a “representative elementary volume” (REV). A particle “encounter” with 

a sparsely distributed, very small rate w0 can have a large impact on the overall 

transport, but w0 can be entirely absent in a REV average of {w}; other problems with 

the REV have been pointed out previously in the literature. 

Thus the details of the distribution of {w}, or as we will show the ensemble average of 

the {w} over all the configurations of a specific system, are key to the nature of the 

transport. The variation in spatial displacements in the distribution of 

€ 

w s, ′ s ( )  is small in 

the type of transport typically encountered in geological formations. For example, the 

“tube” lengths in the pore-scale model above have a narrow distribution. However, the 

variation in rates (i.e., values of

€ 

w s, ′ s ( ) ), which is governed by the velocity spectrum of 

the flow field, is very large for highly disordered media; for example, the fluid flow 
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distribution in the “tubes” governs the transit time between pore sites (see section 3.8).  

Hence the temporal distribution of the pdf (i.e., the range of 

€ 

w s, ′ s ( )[ ]−1) discussed at the 

beginning of section 2 dominates the nature of the transport. The emphasis on temporal 

aspects of particle transport, induced by the spatial heterogeneity, is a key feature of the 

CTRW approach. We consider the significance of this emphasis further when we 

contrast CTRW to the usual ADE framework in section 6.1. 

For now, we picture tracer transport as a series of discrete (in space) transitions. These 

can be defined naturally, for example, as transitions through a fracture network between 

fracture intersections. If we carefully retain the temporal distribution of these 

transitions, this picture can be expanded easily to a continuous-in-space formulation. 

 

2.2. Basic Formulation of Transport 

Our point of departure is a general framework that can encompass all of the processes 

enumerated above as special cases and reduce to the ADE for a “perfectly 

homogeneous” medium. Defining this overarching framework is a transport equation 

incorporating the full range of {w} for any given realization of the domain, 

€ 

∂C s,t( )
∂t

= − w ′ s ,s( )C s,t( ) +
′ s 
∑ w ′ s ,s( )C ′ s ,t( )

′ s 
∑  (1) 

where C(s, t) is the normalized particle concentration or probability at point s and time t 

in a specific realization of the domain and the dimension of 

€ 

sw∑  is reciprocal time. 

Equation (1) expresses a conservation of mass at each site s and describes the rate of 

concentration change at s as a function of the distribution of probabilities of moving 

from s to s’ and from s’ to s.  This equation is known as the “master equation” (ME) 

[Oppenheim et al., 1977; Shlesinger, 1996]. It has been utilized widely in the physics 

and chemistry literature, e.g., electron hopping in random systems [e.g., Klafter and 

Silbey, 1980a]. In most of the applications considered here, the transition rates describe 

the effects of the velocity field on the particle motion. It is important to point out that 

the transport equation (1) does not separate the effects of the varying velocity field into 

an advective and dispersive part of the motion. 
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Specification of 

€ 

w s, ′ s ( )  involves detailed knowledge of the system, i.e., characterization 

of the heterogeneities on all length scales that influence the calculation of the flow field. 

Below the λ scale we must resort to a statistical description of this subdomain and hence 

to a distribution of {w}. To realize this probabilistic approach, we consider the 

ensemble average of (1), which can be shown [Klafter and Silbey, 1980b] to be of the 

form 

€ 

∂c s,t( )
∂t

= − φ ′ s − s,t − ′ t ( )c s, ′ t ( )d ′ t 
0

t
∫

′ s 
∑ + φ s− ′ s ,t − ′ t ( )c ′ s , ′ t ( )d ′ t 

0

t
∫

′ s 
∑  (2) 

 

where c(s, t) is the mean, ensemble-averaged, normalized concentration and 

€ 

φ s,t( ) is 

defined in (7).  

The form of (2) is a “generalized master equation” (GME) which in contrast to (1) is 

nonlocal in time, that is, (2) contains an integral over time requiring knowledge of the 

past state of the concentration. 

The ensemble average of a set of local (in time) kinetic equations (e.g., equation (1)) for 

a disordered system leads to a nonlocal transport equation, because all of the {w} are 

made available to each site and the role of 

€ 

w ′ s ,s( )  is replaced by a function of time 

which depends on a distribution of transit times between sites. Hence the ensemble 

average of any set of equations describing the dynamics of a physical model of a 

disordered system will lead to a nonlocal equation. (For a simple example see section 

7.1 (especially (90) and (91)).)  

The various nonlocal transport equations often have similar form, but there is no 

intrinsic relation between them as each depends on the physical model that generated 

them (see section 6.2). In fact, the use of nonlocal equations for a broad class of 

transport problems has a long history [e.g., Zwanzig, 1960; Mori, 1965, and references 

therein].  

Applications more specifically related to the present ones include those of Kenkre et al. 

[1973], Montroll and Scher [1973], Scher and Lax [1973a], Shlesinger [1974], Scher 

and Montroll [1975], and Klafter and Silbey [1980a]. 
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The transition rates in (2) are time-dependent but stationary, depending only on the 

difference s-s’. Hence, depending on available knowledge of the system, λ can range 

from meters to tens and hundreds of meters. As in (1), note that in (2) there is no 

separation between an advective and dispersive part of the motion. 

 

2.3. CTRW Transport Equations 

Using the Laplace transform, it can be shown [Kenkre et al., 1973; Shlesinger, 1974] 

that the GME (2) is completely equivalent to a CTRW (see Appendix A) 

€ 

R s,t( ) = ψ s− ′ s ,t − ′ t ( )R ′ s , ′ t ( )d ′ t 
0

t
∫

′ s 
∑  (3) 

 

where R(s, t) is the probability per time for a walker to just arrive at site s at time t and 

€ 

ψ s,t( ) is the probability per time for a displacement s with a difference of arrival times 

of t. 

The initial condition for R(s, t) is 

€ 

δs,0 δ t − 0
+( ), which can be appended to (3). The 

€ 

ψ s,t( ) is the basic pdf discussed at the beginning of section 2; 

€ 

ψ s,t( ) determines the 

nature of the transport, as will be considered in applications below. 

A random walk with continuous time was introduced by Montroll and Weiss [1965] 

using a distribution 

€ 

ψ t( )  (see (5)) for the step time. The generalization of the formalism, 

i.e., the appearance of equation (3) with the joint distribution 

€ 

ψ s,t( ) and labeled 

“CTRW”, and the physical application to transport, was first given by Scher and Lax 

[1973a]. Equation (3) describes a semi-Markovian process, Markovian in space but not 

in time, which accounts for memory in particle transitions. The CTRW reduces to a 

Markovian random walk for a single rate. 

The correspondence between (2) and (3) is 

€ 

c s,t( ) = ψ t − ′ t ( )R s, ′ t ( )d ′ t 
0

t
∫  (4) 

where 
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€ 

ψ t( ) =1− ψ ′ t ( )d ′ t 
0

t
∫  (5) 

is the probability for a walker to remain on a site, 

€ 

ψ t( ) ≡ ψ s,t( )
s
∑  (6) 

 

€ 

˜ φ s,u( ) =
u ˜ ψ s,u( )
1− ˜ ψ u( )

 (7) 

where the Laplace transform (L) of a function f(t) is denoted by 

€ 

˜ f u( ). 

Equations (3)–(5) are in the form of a convolution in space and time and can therefore 

be solved using Fourier (F) and Laplace transforms [Scher and Lax, 1973a]. The general 

solution, for periodic BCs in a lattice of size N (with site positions 

€ 

s = s ja j , s j =1,2,3,...,N
j=1

3

∑  and aj=lattice constant), is 

€ 

C k,u( ) =
1−ψ u( )

u
1

1− Λ k,u( )
 (8) 

Where C(k,u) and 

€ 

Λ k,u( )  are the Fourier transforms of 

€ 

˜ c s,u( ) and 

€ 

˜ ψ s,u( ) respectively, 

where for each component of k the range of k values is 

€ 

ki = 2πli N , and li is an integer, 

€ 

− N −1( ) 2 ≤ li ≤ N −1( ) 2 , for odd N. 

An input of 

€ 

ψ s,t( ) in 

€ 

Λ in (8) leads to the determination of c(s, t), which represents the 

tracer plume concentration after a F and L inversion. Because N is considered to be very 

large, the solution (8) is regarded as being in the infinite domain, vanishing at infinity.  

Solutions for a bounded domain and for more general boundary conditions can also be 

developed. Note also that as N is very large, the lattice constant can be arbitrarily small 

and, for example, 

€ 

ψ s,t( ) can have a range of many lattice sites. The lattice thus acts as a 

“scaffold” to determine the solution (8) and does not confine the spatial distribution of 

the plume. 
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In addition to the determination of the concentration plume (8), another key function in 

CTRW is the first passage time distribution F(s, t), the probability density for a walker 

starting at the origin to reach s for the first time. 

The solution in (8) is for periodic BCs; experiments and observations often call for an 

absorbing BC or exit plane. The main measurement for these experiments is the BTC, 

which is equivalent to the F(s, t) evaluated on a plane (e.g., s1=L). 

The implicit relation for F(s,t) is 

€ 

R s,t( ) = δs,0δ t − 0
+( ) + F s,t'( )R 0,t − t'( )dt '

0

t
∫  (9) 

Which states that the walker arrives at s for the first time at time t’ and in the remaining 

time t-t’, the walker can visit and leave s an arbitrary number of times but ends at s.  

Equation (9) contains a convolution in time, and so in Laplace space the relation 

becomes an algebraic one that is solved easily: 

€ 

˜ R s,u( ) = δs,0 + ˜ F s,u( ) ˜ R 0,u( )  (10) 

thus: 

€ 

˜ F s,u( ) =
˜ R s,u( ) −δs,0

˜ R 0,u( )
 (11) 

 

To obtain a BTC, we first consider that the walk starts from a plane, e.g. s1=0, and 

evaluate F(s,t) at a fixed distance s1=L by summing over the other si directions (i>1), 

€ 

fB t( ) ≡ F s1 = L,s2,s3,t( )
s2 ,s3

∑  (12) 

 

2.4. Numerical Inversion of Laplace Transforms 

The analytical solutions developed in section 2.3, are of limited use in their Laplace 

space form. We therefore need to invert these solutions to the time domain. The 

inversion for the L involves finding the solution g(t) of an integral equation of the first 

kind [Krylov and Skoblya, 1977]: 
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€ 

g t( )e−utdt =G u( )
0

∞

∫  (13) 

 

where G(u) is a given function of the complex parameter u. 

In a few important cases we can develop G(u) in an asymptotic form, for small u 

behavior, and solve for g(t) for large t by analytic means. In general, we must resort to 

numerical means. We use the de Hoog et al. [1982] Laplace inversion algorithm, which 

makes use of complex-valued Laplace parameters. 

The algorithm works as follows: Suppose that one is interested in the solution for a 

range of times spanning from tmin to tmax. This range of times is then discretized in a 

time vector of arbitrary length N. It was observed that simultaneous inversion for times 

covering several orders of magnitudes gives inaccurate results for the small times. 

Therefore the algorithm splits the time vector for which we want to obtain the 

concentrations into sections of the same order of magnitude (usually a logarithmic 

cycle), and the individual sections are inverted at a given time. So if the time vector 

spans n orders of magnitude, the inversion process will run n times. It is often a good 

idea to discretize the time vector in such a way that its values are equally spaced on a 

logarithmic scale. 

The solution of the complex-valued partial differential equation (pde) must be known 

for a series of u values determined by the expression 

€ 

uk, j =
1
2Tk

−log10ε + j2π −1( )  (14) 

where Tk is the maximum time for the kth piece of time vector (k=1,…,n), and 

j=1,…,m. The 

€ 

ε parameter is typically of the order of 10-9, and m is the number of 

terms in the Fourier series expansion (obtained from the inversion integral using the 

trapezoidal rule), typically in the range of 20 to 40. Note that, for each of the n pieces, 

the complex-valued uk,j in the above formula have an invariant real part and a variable 

imaginary part where the Fourier series expansion is calculated (with the use of an 

accelerated convergence method of the algorithm [de Hoog et al., 1982]). Practically, 

the user provides the full range of times and the numerical inversion subroutine will call 
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the pde solver  times, one for each of the uk,j values determined by the above 

procedure. The output is a series of concentration values at the discretized times in the 

time vector. 

On the basis of the solutions discussed herein and the work of Dentz et al. [2004] and 

Cortis et al. [2004b], a CTRW ‘‘toolbox’’ has been developed [Cortis and Berkowitz, 

2005] that provides a collection of easy-to-use MATLAB scripts and functions to 

calculate the full temporal and spatial behavior of a migrating tracer. The CTRW 

toolbox is freely available at http://www.weizmann.ac.il/ESER/People/Brian/CTRW. 

 

2.5. Critique of the CTRW Approach 

The applicability of the CTRW approach to a range of experiments was shown in 

section 3, and the numerical simulations of transport in nonstationary domains 

demonstrate further applicability of CTRW to field situations.  

These features indicate that the interactions between the transporting particle and the 

medium can be mapped effectively onto an appropriate choice of ψ(s, t). Furthermore, a 

few characteristics of the ψ(s, t) are very often sufficient to capture completely the 

particle dynamics. This description begs the immediate question of how one obtains 

ψ(s, t). A considerable effort may be required, but one can proceed in a hierarchy of 

levels of approximation. Here we suggest five possible approaches:  

(1) Fit the measurements with a simple form of ψ(s, t), e.g., (45), and use β as a 

fitting parameter.  

(2) Develop a ‘‘library’’ of ψ(s, t) for different types of geological formations 

and flow conditions.  

(3) Obtain the velocity histogram for a RFN [Scher et al., 2002a], a porous 

medium [Bijeljic and Blunt, 2006], or permeability field [Di Donato et al., 2003] 

and model ψ(s, t).  

(4) Perform a numerical simulation on part of a complex system, e.g., an array of 

intersecting fracture platelets, and determine ψ(s, t) in terms of variables such as 

platelet size and aperture and then use a pdf of these variables to develop ψ(s, t) 

for the entire system.  
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(5) Determine the w(s, s’) and calculate the ensemble average. Also, in the case 

of a multiple trapping scenario, constraints on ψ(s, t) can be obtained by using its 

specific connection to mass transfer. 

Explicit and analytical linking or conditioning of ψ(s, t) to known physical information, 

such as the heterogeneity of the hydraulic conductivity field, is certainly a key area to 

develop. A step in this direction is given by Dentz and Berkowitz [2005], who 

demonstrate a ψ(s, t) that is based explicitly on the underlying heterogeneity 

distribution, for the case of transport under spatially random adsorption. On the other 

hand, it should be recognized that there naturally are limitations to full determination of 

ψ(s, t), or for that matter any such effective transport description, from purely 

theoretical considerations.  

However, to reiterate, on a practical level such full determination of ψ(s, t) is not 

crucial. The remarkable feature documented in this paper is that a very few parameters 

capturing the important features of ψ(s, t) are sufficient to account quantitatively for a 

host of observations. Even the well-known determination of the macrodispersion 

coefficient given by Gelhar and Axness [1983], as used in the ADE, is predicated on the 

assumption of Fickian transport but also on ignoring completely the dependence of this 

parameter on the cutoff (transition) time between non-Fickian and Fickian transport.  

Moreover, a priori prediction of this transition is not trivial, being dependent on, e.g., 

the velocity distribution, the particle residence time, the heterogeneity scale of the 

hydraulic conductivity, and the boundary conditions. Thus full specification of a 

transport equation and parameter values must ultimately rest on site-specific 

measurements. As noted in the preceding paragraph, several approaches can be taken to 

obtain this information. In particular, because the underlying permeability distribution 

of a domain gives rise to the velocity distribution, which thus includes naturally all 

correlations affecting transport, the velocity distribution can be used to define the actual 

particle distributions.  Treatment of many sorption and other multiple trapping pictures 

is straightforward and shown by, e.g., Margolin et al. [2003]. Further extension of the 

CTRW formulation, i.e., specification of either a ψ(s, t) and/or modifications to account 

explicitly for biogeochemical reactions such as precipitation/dissolution or other, often 

nonlinear (feedback), reactions is another area for future research.  
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Another important area for further development focuses on methods of solving the 

transport equation. While the mathematics are somewhat more extended than those 

involved with the familiar ADE, CTRW solutions are accessible, and the pde 

formulation enables adaptation of many existing solution techniques. This review has 

focused on the methodology of Laplace transforms, but one can work directly in the 

time domain, if desired. 

Because CTRW results from an ensemble average, the concentration distribution in 

CTRWis also an ensembleaveraged quantity, which we usually assume to be sufficient 

for a system size large compared to the scale of heterogeneity. The variation in the 

concentration, at a specific location, among different realizations of the underlying 

random fields is thus not quantified explicitly; that is, the average concentration is an 

ensemble average. In other words, if the system size L is much greater than the scale of 

heterogeneity l, then the rearrangement of the heterogeneity disorder from one 

realization to the next will result in a small change in a given neighborhood. Hence the 

variation from the ensemble-averaged C(s, t) is expected to be small. Furthermore, the 

dynamics of c(s, t) are governed by ψ(s, t), which is a pdf based on the flow field (and 

thus heterogeneity distribution) of the entire system; this feature enhances the sampling 

of each locale to the heterogeneity distribution of the whole system. In contrast, if L l, 

then the variations in realization-to-realization configurations can lead to large 

heterogeneity differences in a given locale and therefore large variations in 

concentration. For systems with L l it is best to use the hybrid approach; the ensemble 

average is then used for the small-scale residual heterogeneities. Thus the issue of 

variations is closely tied to the comparison between L and l. On a physical basis the 

ensemble average is best utilized when L > l. 

On a formal basis, ‘‘predictive uncertainty’’ in the CTRW can be considered on two 

levels. The first level involves the GME (2), which is an equation for the ensemble-

averaged C(s, t). In principle, an equation for the variance of this function can also be 

developed from the master equation itself. The second level is a practical one: How 

sensitive are the results to variations in the parameters that one inputs into ψ(s, t)? In 

any application with a model ψ(s, t) one can easily use Monte Carlo simulations to 

compute the effects of these variations on final predictions and hence assess the 

‘‘predictive uncertainty.’’ It remains to examine these issues in detail.  
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3. Advection-Dispersion Equation and Upscaling 

 

In section 1 we discussed the intensive efforts to model transport in porous media over 

the last decades. Many of these efforts are basically tied to the ADE. Afterwards we 

have discussed in detail the ramifications of the ADE approach and related modeling 

frameworks. We then contrast them to the CTRW framework with a particular emphasis 

on the different methods of averaging of the disorder-induced fluctuations of transport 

quantities.  

The ADE is used extensively in all the natural sciences; for example, in semiconductor 

physics it describes the flow of electrons due to an applied voltage and allows for 

diffusive motion driven by spatial variations of the electron density. In liquid transport 

the ADE is used, e.g., to calculate Taylor dispersion (molecular diffusion of particles in 

a flowing fluid in a pipe). The ADE is  

 

 

 

which is the same as the equation for constant fluid velocity v and dispersion D. Hence 

one derivation of the ADE applied to porous media can be based on the kinetics 

described by the master equation (1) with a Taylor expansion of C(s, t), and w(s, s’) 

[Berkowitz et al., 2002]. 

The classical derivation of the ADE for porous media [e.g., Bear, 1972] is based on the 

assumption of the existence of a representative elementary volume (REV), i.e., on the 

assumption that at some scale x >> y the variations of the porous medium at the x scale 

can be considered homogeneous. The other required assumptions are that  

(1) the porous medium is fully saturated;  

(2) Darcy’s law applies;  
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(3) transport of a tracer can be split a priori into an advective part and a 

mechanical dispersion part;  

(4) mechanical dispersion obeys Fick’s law, where the coefficient D is assumed 

to be composed of a molecular diffusion part, Dm, and a velocity-dependent 

part, which in one-dimensional form is written D = Dm + vα, with α the so-

called dispersivity usually assumed to be a characteristic length of the pores 

inside the REV  

(5) the transport velocity equals the fluid velocity; and  

(6) the spatial variation of the fluid velocity inside the REV can be neglected.  

 

The historical motivation for the REV stems from the need to use a continuous 

mechanistic approach for porous media, i.e., media which are inherently discontinuous 

at the scale of the pores. For some quantities this is a very useful notion, as in defining 

geometrical properties like porosity, specific surface, and permeability as an average 

over the REV. These quantities can in some sense be considered ‘‘local quantities.’’ 

Averaging over the REV to define other quantities such as dispersivity is more limited 

and is a point of departure from the CTRW approach. 

It must be recognized that use of the ADE, at a variety of different scales, is a key 

aspect of the vast majority of transport theories. The dispersivity a then takes on the role 

of a ‘‘scaling’’ parameter in the sense that varying its magnitude is the basis for fitting 

ADE solutions to BTC measurements ranging over several orders of magnitude. A 

major drawback of the approach is that, in contrast to the fundamental assumption that a 

is an intrinsic porous medium constant, ‘‘force fitting’’ the ADE to measurements over 

scales from the small laboratory column to the large field scale demonstrates an ad hoc 

‘‘space dependence’’ or ‘‘time dependence’’ of a [e.g., Lallemand-Barres and 

Peaudecerf, 1978; Gelhar et al., 1992]. 

A number of approaches have been made to connect the different scales with D or a as a 

fitting parameter. All of these approaches start from the assumption that the ADE 

equation holds at some microscopic scale and then assume further that some kind of 
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macrodispersion parameter can be found starting from the information contained at a 

microscopic scale. In many approaches it is also assumed that the ADE form holds at 

each scale with upscaled coefficients. The two main approaches, which to some degree 

overlap, we denote for brevity as ‘‘averaging’’ and ‘‘stochastic’’ methods. 

 

3.1. Volume Averaging 

 

3.1.1. Methods 

The aim of averaging is to start with the ADE at the microscopic scale and move to a 

larger scale to obtain an ADE with modified coefficients. The challenge is to account 

for the deviation from the mean, due to the microscopio fluctuations, of the velocity and 

dispersion. We will highlight a few of these different approaches. 

In ‘‘volume averaging,’’ moving up from one scale to another in a porous medium 

necessitates the use of some kind of average operator on the microscopic fields at the 

scale Ly to obtain fields which are significant at the macroscopic scale Lx. This average 

operator acts on some volume of the porous medium and assigns a macroscopic value to 

it. Therefore, unlike the microscopic fields, the macroscopic fields are smeared over 

space. 

The question then arises: What is the ‘‘correct’’ size of the averaging volume? The 

usual answer is to define a REV as the smallest volume of integration for which there 

are no fluctuations in the averages of one or more of the characteristic features of the 

porous medium; for example, Bear [1972] defines the REV in terms of porosity. The 

size of the REV, Lx, must be intermediate between a characteristic microscopic length 

and a characteristic macroscopic length scale of the sample, LR, i.e., Ly << Lx << LR. 

Sometimes these length scales depend not only on the microstructure of the porous 

medium but also on the physical process under study. It is also possible that porous 

media with clear separations of the geometric scales do not have a REV for a particular 

physical process. We argue that this is the case for the dispersion problem in porous 

media. 
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Moreover, Berkowitz and Bachmat [1987] showed that a REV-like dispersion tensor is 

necessarily scale (REV size) dependent when deviations of the macroscopic velocity are 

taken into account. A general definition of the volume average operator, indicated by 

angle brackets, can be made in terms of convolution products of spatial distribution 

functions [Cushman, 1984; Quintard and Whitaker, 1994]. An important result relating 

the gradient of some quantity  at the microscales and macroscales is represented by a 

theorem that states that the average of the gradient of , , at the microscopic scale 

y equals the gradient at the macroscopic scale x of the averaged physical quantity  

plus a fluid-solid surface average contribution. 

A modified accounting for the role of deviations from average values, which arise from 

the same upscaling framework, is to use the ‘‘volume averaging with closure’’ method. 

Here the term ‘‘closure’’ refers to a particular integrodifferential problem, which 

determines definition of the deviations of the quantities of interest from their mean 

value using a pde. This method thus attempts to assign coefficients that prescribe the 

functional dependence of deviations from average quantities on the basis of a physically 

meaningful microscopic process. A detailed account of the approach is given by 

Whitaker [1999].  

The basic requirements of this method are  

(1) separation of the microscopic and macroscopic length scales (see discussion 

below);  

(2) periodicity on the boundaries of the REV;  

(3) a phenomenological (postulated) relationship between the deviations of the 

quantities of interest from the average value and the gradient of the average 

quantity itself;  

(4) a coefficient of proportionality in requirement 3 that usually satisfies an 

integrodifferential problem that is similar to, or can be mapped onto, the original 

microscopic equations; and 

 (5) a starting microscale equation that is invariably an ADE. 
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A typical definition of the macrodispersion coefficient (for constant porosity n and 

dropping the bold notation for vectors) is given by  

 

 

 

 

 

where the vector b is given by the problem  

 

 

    on     

 

          for        

where, I is the identity tensor, Afs denotes the fluid-solid surface, Vf is the fluid 

volume, nfs is the normal vector to the fluid-solid surface, and the subscripts f and s 

denote fluid and solid phases, respectively. Thus the uncertainty in the fluctuations from 

the mean is mapped onto the quantity b, which, in turn, solves a microscopic ADE 

problem. The requirement of periodicity at the scale of the REV is key to this method. 

Bhattacharya and Gupta [1990] proved that to derive the ADE (in a central limit 

theorem framework, for instance), the requirement of periodicity (or quasiperiodicity) 

on the fluid velocity v is needed. 
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 ‘‘Homogenization theory’’ [see, e.g., Rubinstein and Mauri, 1983; Bourgeat et al., 

1988] and the ‘‘renormalization group’’ are upscaling techniques that have been used in 

the context of volume averaging. These approaches require an underlying REV at some 

scale for which a significant average concentration can be defined locally. Locality is 

enforced by the specification of periodic BCs on the relevant quantities over the local 

cell (REV).  

In these theories an important parameter for the upscaling of the equations is є = Ly/Lx, 

where Lx is the length scale of the macroscopic variations and Ly is the length scale 

corresponding to the local variations. 

The homogenization method establishes a hierarchy of equations based on an expansion 

of the original transport problem in є. A closure hypothesis is needed to truncate the 

hierarchy; the usual one chosen is a Fickian one [see, e.g., Bourgeat et al., 1988]. 

Rigorous derivation of a stochastic homogenization method that does not require 

periodic BCs is given by Auriault and Adler [1995] and Lunati et al. [2002]. 

‘‘Renormalization group’’ techniques have been used in the context of subsurface 

hydrology to determine macrodispersion coefficients for solute transport in random 

flow fields [e.g., Koch and Shaqfeh, 1992; Zhang, 1995; Jaekel and Vereecken, 1997]. 

Starting from an ADE with random advection, the macrodispersion coefficients are 

expanded into a perturbation series in the fluctuations of the random flow field. The 

renormalization group represents in this context a tool to systematically sum up certain 

contributions of the perturbation series (and in its simplest application a so-called one-

loop renormalization is used).  

The resulting macrodispersion coefficients are beyond second-order perturbation theory 

in the random field fluctuations, similar to the results obtained from the application of 

‘‘Corrsin’s conjecture’’ [e.g., Dagan, 1994b; Zhang, 1995]. The latter, however, has 

been shown to be inconsistent in two dimensions [Dagan, 1994b; Dentz et al., 2003; 

Attinger et al., 2004]. 
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3.1.2. Length-Scale and Timescale Separation. A Critical Discussion of the ADE and 

Averaging 

 

At the start of this section we noted basic assumptions required for applicability of the 

ADE. The assumptions that a porous medium can be considered homogeneous at the 

relevant scale of measurement and that transport mechanisms can be separated a priori 

into components of advection and hydrodynamic dispersion are highly restrictive. 

However, as discussed in section 1, illustrated in the ‘‘homogeneous’’ medium shown 

in Figure 1, the key underlying assumption that small fluctuations can be neglected is 

clearly inadequate. Thus ADE-type descriptions of tracer transport and use of, e.g., 

REV approaches are rarely fully correct even on local scales of several centimeters. 

At best, ADE-type descriptions usually capture only the average properties of tracer 

migration. Only when the transport length is orders of magnitude larger than the 

heterogeneity scale does homogenization occur, with the result that Fickian transport is 

indeed present in the system. For real domains with a finite hierarchy of heterogeneity 

scales, but also finite (and usually limited) domain lengths, i.e., for the vast majority of 

field-scale transport problems of interest, a REV-like homogenization limit does not 

exist. To make matters more complex, determination of the ‘‘cutoff’’ at which Fickian 

transport descriptions are correct is far from rigorous.  

Let us consider these issues further, recognizing that an efficient and meaningful 

upscaling to large spatial and temporal scales is required of any practical transport 

theory. As shown by Levy and Berkowitz [2003], analysis of solute transport in 

‘‘macroscopically homogeneous’’ media indicates that flow and transport do not 

‘‘homogenize’’ on the same temporal and spatial scales. The fundamental importance of 

time and length scales relative to the scales of heterogeneity and domain size were also 

examined in the context of the two column experiments in section 3.5. The transition 

from non-Fickian to Fickian behavior as the column length increased showed that the 

difference in residence time was the determining factor. In other words, the validity of 

Darcy’s law on certain spatial scales does not automatically imply that transport of a 

passive solute can be described by the standard Fickian theory. 
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A consequence of this fact is that the effects of transport processes cannot simply be 

separated into ‘‘independent’’ mechanisms. Because the timescale changes as the 

overall flow rate changes, the transport parameters (e.g., β or equivalent parameters for 

other forms of ψ(t)  in the CTRW framework) are not ‘‘intrinsic’’ and constant. This 

result is in stark contrast to the specification of precisely these assumptions for, e.g., the 

dispersivity a in the ADE. This behavior accounts also for the intertwining of the two 

dispersion mechanisms in the CTRW-based FPME formulation in contrast to the usual 

ADE or stochastic approaches, which attribute the spreading of the BTC only to the 

second spatial moment of the tracer distribution. The memory function is indicative of a 

nonlocal-in-time dispersion, whereas the Dψ parameter, required to fit the entire BTC, 

provides a measure of the local-in-space dispersion. 

Traditional transport theories have focused on spatial heterogeneity. A key feature of 

the CTRW approach, on the other hand, is the emphasis on temporal aspects of particle 

transport, induced by spatial heterogeneity. Shifting the focus to work within the CTRW 

framework therefore represents a change in paradigm. 

As discussed in section 6.1.1, some of the averaging techniques require that the porous 

medium be periodic (i.e., the hypothesis of periodicity is a crucial one in the argument 

of Brenner [1980], together with the hypothesis of ergodicity). While assuming 

periodicity is a convenient idealization for small-scale fluid flow applications [see, e.g., 

Dorfman and Brenner, 2002, and references therein], specification of natural geological 

structures as periodic is not an appropriate starting point for modeling contaminant 

migration. Another consequence of the periodicity requirement should also be 

recognized: Brenner [1980] showed that for periodic porous media the ‘‘fluid velocity’’ 

v is necessarily identical to the ‘‘transport velocity’’ vψ and traced the difference 

between the two velocities only to some particle-size dependent exclusion effect. While 

this is certainly an important factor, for instance, in colloidal transport (where 

dispersion generally plays a minor role), other mechanisms are present as well. 
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CTRW theory, on the other hand, is not limited by the assumption of periodicity (nor of 

ergodicity). Periodicity is, in fact, strictly forbidden at a local scale, because the 

structure of the master equation (1) requires, in general, an accounting of all jumps in 

the domain. Relaxing these assumptions in a CTRW framework leads to the correct 

physical picture that the fluid velocity v is, in general, different from the tracer transport 

velocity vψ. In the CTRW picture the relative weights of each jump, and therefore the 

possibility for a tracer to explore different positions in space, are governed by the 

transition times w-1. 

 

3.2. Stochastic Approach 

Rather than give a comprehensive review, in this section we highlight two important 

aspects of the stochastic approach to subsurface hydrology that are of relevance in the 

present context:  

(1) non-Fickian transport and  

(2) effective transport descriptions and their relation to CTRW. We emphasize 

that the term ‘‘stochastic approach’’ is a general one and can, in principle, 

include a wide variety of formulations (including CTRW) and solution methods. 

However, we shall use the term as it has been identified in recent years, namely, 

with the particular framework outlined below. 

The stochastic approach has been considered extensively in subsurface hydrology and 

applied to a wide variety of transport situations ranging from passive and reactive solute 

transport to the study of seawater intrusion in spatially heterogeneous environments. For 

thorough overviews of stochastic modeling in hydrology we refer the interested reader 

to the textbooks by, e.g., Dagan [1989], Gelhar [1993], Dagan and Neuman [1997], 

Zhang [2002], and Rubin [2003]. Critical reckoning of the current position of stochastic 

modeling in subsurface hydrology can be found in a series of papers [Christakos, 2004; 

Dagan, 2004; Freeze, 2004; Ginn, 2004; Molz, 2004; Neuman, 2004; Rubin, 2004; 

Sudicky, 2004; Winter, 2004; Zhang and Zhang, 2004]. 
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In a stochastic approach, spatially and temporally fluctuating system parameters such as 

hydraulic conductivity, porosity, and chemical properties of the medium, for example, 

are modeled as random fields characterized by specific, experimentally accessible 

statistical properties. The effective transport behavior of a solute can then be obtained 

by ensemble averaging of the observables of interest over all realizations of the 

respective random fields. 

 

3.2.1. Transport Coefficients and Non-Fickian Behaviour 

The influence of medium heterogeneities on largescale transport can be quantified in 

terms of effective transport coefficients such as the effective center of mass velocity and 

effective dispersion coefficients, which are derived from the first and second moments 

of the normalized concentration c(s, t), respectively. 

In the stochastic approach, large-scale transport coefficients are defined as averages 

over all possible realizations of the respective random fields. We focus here on 

‘‘ensemble dispersion’’ coefficients  [e.g., Kraichnan, 1959; Roberts, 1961; 

Gelhar and Axness, 1983; Neuman et al., 1987; Dagan, 1984, 1988], which are derived 

from the ensemble-averaged concentration distribution, c(s, t):  

 

Note that the  characterize the spreading of the average solute distribution and 

not necessarily solote spreading in a typical heterogeneity realization, as opposed to 

‘‘effective’’ dispersion coefficients [e.g., Batchelor, 1949; Kitanidis, 1988; Dagan, 

1990, 1991; Rajaram and Gelhar, 1993; Zhang and Zhang, 1996; Attinger et al., 1999; 

Dentz et al., 2000]. The  is independent of time if, e.g., the concentration 

distribution is Gaussian. We focus on  because it is related to the dispersive flux 

in an effective upscaled transport equation for the average solute concentration. 
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A principal result of the stochastic approach is that of Gelhar and Axness [1983], who 

expressed the heterogeneity- induced solute spreading by means of a longitudinal 

macrodispersion coefficient  related to the variance  and correlation length l 

of the log-hydraulic conductivity field f(s) and the mean, ensemble-averaged, 

groundwater flow velocity [[v]],  

 

Frequently, large-scale transport is modeled by advectivedispersive transport with local-

scale dispersion substituted by the (constant) macrodispersion coefficients. The 

assumptions underlying this approach are that  

(1) large-scale transport obeys the same dynamic equation as transport on a local 

scale and  

(2) (constant) local-scale transport coefficients can simply be substituted by their 

(constant) largescale counterparts given as suitably defined ensemble averages. 

However, the  are, in general, functions of time or transport distance, as 

discussed, e.g., in section 6.1 [e.g., Koch and Brady, 1987, 1988; Dagan, 1988; Neuman 

and Zhang, 1990; Koch and Shaqfeh, 1992], i.e.,  

=   

which implies that large-scale solute dispersion is, in general, non-Fickian.  

Here we review briefly aspects of non-Fickian dispersion as a consequence of the 

correlation structure of the loghydraulic conductivity. We note for comparison, the 

CTRW theory also relates the statistical properties of the hydraulic conductivity, 

through determination of the statistical distribution of 1/v, directly to the ψ(t)  and the 

memory function M(t). A related treatment based on analysis of transport in streamlines 

is given by Di Donato et al. [2003]. 
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3.2.2. Discussion 

Most stochastic approaches to subsurface transport model local-scale transport by a 

spatially and temporally local transport equation that is characterized by spatially and 

temporally varying transport parameters. Thus nonlocal effects caused by small-scale 

heterogeneities are not taken into account in the ‘‘traditional’’ stochastic approaches. 

While not a prerequisite, a local-scale ADE-like equation is almost invariably chosen as 

the starting point for development of an upscaled transport equation. As discussed in 

section 6, the application of (74) to describe local-scale transport in a saturated aquifer 

assumes that transport is Fickian in an homogeneous region. However, in real aquifers 

the ‘‘homogeneous’’ regions are restricted in size. As pointed out by, e.g., Levy and 

Berkowitz [2003] and Cortis et al. [2004a], tracer transport even over small domain 

sizes is not necessarily Fickian, and flow and transport do not ‘‘homogenize’’ on the 

same temporal and spatial scales. The effect of non-Fickian transport characteristics at 

the local scale remains to be explored within the framework of the stochastic approach. 

A closely related problem arises: In terms of defining a local-scale equation one must 

ask, How local is ‘‘local’’? The heterogeneity of the conductivity field is often used to 

fix the heterogeneity of the velocity field (through Darcy’s law), neither of which is 

well defined at the pore scale. As such the assumed local transport equation can be 

considered applicable only at some scale larger than that of the pores. In the same sense 

the relevant stochastic field is thus not the conductivity field but rather the velocity 

field. 

Discussion of a number of issues related to the very existence and definition of 

‘‘macrodispersion’’ is in order. First, expressions for the macrodispersion, are valid 

only in a large time, Fickian regime for transport. This limit is rarely, if ever, reached in 

practice. Second, the cutoff at which macrodispersion is reached is not well defined 

because of memory effects. Thus the classical ‘‘macrodispersion’’ parameter is not 

necessarily an ‘‘absolute’’ quantity. Another interesting perspective that questions 

whether macrodispersion coefficients exist is given by Lowe and Frenkel [1996]. 
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Furthermore, conceptual questions that remain to be fully addressed refer to the issue of 

self-averaging [e.g., Bouchaud and Georges, 1990; Clincy and Kinzelbach, 2001; 

Eberhard, 2004], i.e., determining the length and timescales over which the ensemble 

average ‘‘observables’’ are representative (and not artifacts of the statistical ensemble) 

of the corresponding observables in a single realization; that is, their sample to sample 

fluctuations become small. Examples for when this self-averaging property does not 

apply are transport in a stratified medium [Clincy and Kinzelbach, 2001; Eberhard, 

2004] and transport in a randomly fluctuating transient velocity field in an 

homogeneous medium [Dentz and Carrera, 2003]. Neuman [1993] and [Guadagnini and 

Neuman, 2001] developed moment equations for the ensemble moments of the solute 

concentration to study the uncertainty of the average solute concentration due to the 

sample-to-sample fluctuations of the solute concentration from realization to realization 

of the underlying random fields.  

Practical application of the stochastic approach to quantify the full evolution of a 

migrating contaminant plume remains a key issue. The overwhelming emphasis of such 

studies has focused on spatial moment characterizations of tracer plume migration 

and/or determination of the macrodispersion parameter.  

It is unfortunate, and somewhat perplexing, that with the intense efforts of the last 

decades on stochastic analyses, consideration of full, measured BTCs and efforts to fit 

them has rarely been attempted. Clearly, for real applications we must consider the full 

spatial and temporal evolution of a migrating tracer plume. A criticism to this effect was 

voiced by Gelhar [1997, p. 174], who stated that the emphasis of the ‘‘stochastic 

approach’’ over the previous decade had been on ‘‘… theoretical refinements of 

practically insignificant, but conveniently solvable, problems ….’’ 

To conclude, both the CTRW approach and the effective transport description resulting 

from a stochastic transport model describe effective solute transport in terms of 

nonlocal transport equations. The basic difference between the CTRW approach and the 

others discussed in this section lies in the basic starting point to quantify transport and 

in the method to account for the impact of fluctuations present in disordered systems.  
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In each chosen locale the CTRW model incorporates a full pdf of the range of transition 

rates composing the transport. A good illustration of this difference is given by Bijeljic 

and Blunt [2006]. The excellent comparison they obtained for the experimentally 

measured macrodispersion as a function of Pe required quantification of the b, derived 

from the full pdf of the interpore transit times. This key information is suppressed by 

the averaging over a locale to obtain coefficients for the ADE. The correct 

determination of macrodispersion requires full knowledge of the entire time dependence 

of the spatial moments of the plume (i.e., a solution of a nonlocal-in-time equation) 

together with the cutoff time. 
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4. Alternative Effective Transport Formulations 

 

Recent attention has been focused on two alternative formulations to treat solute 

transport, based on the multirate mass transfer (MRMT) approach [Pfister and Scher, 

1978; Roth and Jury, 1993; Harvey and Gorelick, 1995; Haggerty and Gorelick, 1995; 

Haggerty et al., 2000; Carrera et al., 1998] and on the use of fractional differential 

equations (FDE) [Benson et al., 2000; Metzler and Klafter, 2000; Baeumer et al., 2001; 

Schumer et al., 2003].  

We note, parenthetically, that two other oft quoted formulations to quantify solute 

transport are based on transfer functions [Jury, 1982; Jury et al., 1986] and stochastic 

convective [Dagan and Bresler, 1979; Sposito et al., 1986] concepts.  

The transfer function approach is a general descriptive method to characterize solute 

flux in heterogeneous media; a medium is treated as a black box, and heterogeneity-

induced effective transport mechanisms are not specified. Transport of a solute is thus 

characterized by a transfer function (Green’s function), which represents the solute 

arrival time distribution at a control plane in response to an instantaneous pulse at an 

input plane.  

The stochastic convective model is essentially a specific implementation of the transfer 

function approach, which assumes that solute transport takes place in independent 

stream tubes with constant flow velocity. There is no mass exchange between stream 

tubes by local dispersion. The influence of a broad range of flow velocities on solute 

arrival is then taken into account by averaging the solution of the one-dimensional ADE 

[Dagan and Bresler, 1979; Sposito et al., 1986]. 

Determination of the number and properties of the stream tubes is ill-defined and 

nonunique, and the method provides only a purely empirical fit to existing 

measurements. Another drawback with these approaches is that parameters fit for a 

specific BTC are not generally relevant for BTC fits or predictions at other times or 

distances. 
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4.1. Multirate Mass Transfer 

The MRMT approach distinguishes mobile and immobile solute fractions. MRMT thus 

models the effect of medium heterogeneities on effective solute transport by a 

distribution of typical mass transfer (exchange) times between mobile and immobile 

solute phases. The discussion of MRMT includes naturally multiporosity and mobile-

immobile models, matrix diffusion, multiple trapping, and transport under linear first-

order reactions. MRMT has been applied to quantify transport of linearly sorbing 

solutes [Sardin et al., 1991; Roth and Jury, 1993], and transport in media characterized 

by regions of fast and very slow solute transport. In the latter context one encounters 

multiporosity and, as a special case, double porosity models [Feehley et al., 2000] and 

mobile-immobile [Nkedi-Kizza et al., 1984] and matrix diffusion models [e.g., 

Glueckauf, 1955; Neretnieks, 1980; Rao et al., 1980; Cunningham et al., 1997; Carrera 

et al., 1998]. These are all summarized under the name MRMT models [Pfister and 

Scher, 1978; Haggerty and Gorelick, 1995; Haggerty et al., 2000] because they describe 

linear mass transfer from mobile to immobile solute phases. 

In MRMT the total solute concentration c(s, t) is decomposed into a mobile (subscript 

m) and an immobile (subscript im) fraction: 

 

The temporal change in the total concentration is balanced by the divergence of 

advective and dispersive flux in the mobile phase, which yields together with the 

equation presented the transport equation [Roth and Jury, 1993; Haggerty and Gorelick, 

1995] 

 

This equation is closed by a linear relation between the mobile and immobile 

concentrations, [Pfister and Scher, 1978] or [Carrera et al., 1998; Haggerty et al., 2000; 

Dentz and Berkowitz, 2003]. 
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To better understand this relation between cm(s, t) and cim(s, t), we first start with a 

multiple trapping process, which is a specific case of MRMT that involves first-order 

transitions into and out of immobilizing sites (traps).  

This was the first example of MRMT shown to be a subset of CTRW [Schmidlin, 1977; 

Noolandi, 1977; Pfister and Scher, 1978].  It can therefore be shown that MRMT is a 

special case of CTRW 

 

4.1.1. Diffusive Mass Transfer 

For diffusive mass transfer the trapping rate , where  denotes the volume 

ratio between the mobile and immobile regions. In this case, P(tr) denotes the 

distribution density of typical diffusion times in the immobile regions. For diffusion into 

spherical immobile regions the transfer function is given by [Haggerty and Gorelick, 

1995; Dentz and Berkowitz, 2003] 

 

while for diffusion into layered immobile regions one finds 

 

 

4.1.2. “First Order” Mass Transfer 

For ‘‘first-order’’ mass transfer between mobile and immobile regions (e.g., the 

trapping case above [Pfister and Scher, 1978; Haggerty et al., 2000]) and for linear 

kinetic adsorption [Roth and Jury, 1993] the transfer function is given by 

 

The functional form of  depends on the particular trapping mechanism. For purely 

advective trapping,  is constant; for “diffusive” trapping, i.e., if diffusive 
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mass transfer is to be mimicked by a first-order mechanism, then [Dentz 

and Berkowitz, 2003]. 

 

4.1.3. Synthesis 

The main point is that CTRW encompasses MRMT as a special case. The relation 

between MRMT and decoupled CTRW on the basis of this expression has been studied 

in detail by Pfister and Scher [1978] and Dentz and Berkowitz [2003].  

The representation of different functions in a MRMT form, although formally possible, 

is not a physically meaningful MRMT process. 

 

4.2. Fractional Derivative Equations 

FDE formulations to quantify transport have received attention in recent years [e.g., 

Benson et al., 2000; Metzler and Klafter, 2000; Baeumer et al., 2001; Schumer et al., 

2003; Zhang et al., 2005]. A detailed treatise is given by Metzler and Klafter [2000]. It 

should be recognized that the term “fractional” can refer to fractional order 

differentiation in time or space or both. Moreover, a number of definitions for fractional 

operators exist [Metzler and Klafter, 2000]. In principle, one can derive both temporal 

and spatial FDEs from a limiting form of the CTRW solution (8) by expanding  

in (8) for small values of u and k, rearranging the equation, and using appropriately 

defined operators. FDEs have also been demonstrated to be special cases of other 

transport formulations [e.g., Cushman and Ginn, 2000]. Here we demonstrate that the 

“usual” temporal fractional derivative equation for transport is a specialized, asymptotic 

limit of the CTRW formulation. We also discuss other limitations of using the temporal 

and spatial FDEs for transport modeling in porous media systems. It is interesting to 

note that while the (temporal) FDE is usually written phenomenologically, as a 

“generalized analog” to the ADE, its underlying physical and mathematical picture is 

elucidated when seen as a limited subset of the CTRW formulation. 

The temporal FDE can be written as [Metzler and Klafter, 2000] 
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with the definition of the operator 

 

 

The primes on v’ and D’ indicate that these quantities do not have the same dimensions 

as usual; that is, v’ has dimensions . Another advantage of the CTRW transport 

equations, is that we can define a dimensionless time , where  is a time unit 

determined by the physical model for . The comparison between FDE and CTRW 

must include this difference in time units. The operator shown before was constructed to 

possess the important relation of its L, 

 

One apparent attraction of the FDE to some proponents is its pde form which is similar 

to the familiar ADE. More significantly, the pde form of the CTRW transport equation 

contains the FDE as a particular case, and its evaluation for a range of BCs is 

straightforward. 

In contrast to the temporal FDE a spatial FDE assumes a transition time distribution  

 with a finite first moment and a transition length distribution p(s) with a diverging 

second moment. This latter condition is unphysical, implying that some particles must 

execute long jumps instantaneously. This case can be shown to be a Markovian process 

(rather than a temporally based semi-Markovian one) called a Lévy flight. It is 

important to recognize that a Lévy flight refers to a random movement in space, where 

the length of the transitions is considered over discrete steps, but time is not involved. 

Lévy walks, on the other hand, attach a time “penalty” by assigning a velocity to each 

transition in space. In the simplest case this velocity is constant; relaxation of this 

condition leads back to the more general CTRW formulation [Klafter et al., 1987; 

Shlesinger et al., 1993]. Lévy walks cannot be described in terms of simple fractional 

transport equations [Metzler, 2000]. 
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Application of a spatial FDE to tracer migration in geological formations demands a 

domain that contains “streaks” of high and low hydraulic conductivity, arranged so as to 

lead to particle transitions of high and low velocity. In other words, the physical picture 

of a Lévy flight requires a wide distribution of streak lengths to obtain a non-Fickian 

distribution of particle transitions. Recall though that non- Fickian patterns arise even 

without the clear presence of such a conductivity distribution. Moreover, even within a 

long streak, particle scatter will reduce or eliminate the number of long excursions. 

The spatial FDE thus uses the power law form , for the transition 

length, which is the characteristic function of a centered and symmetric Lévy 

distribution. 

For  one recovers the usual Gaussian behavior. With an asymptotic (small k) form 

for p(s) one can obtain [Metzler et al., 1998] a spatial FDE 

 

where here D is a generalized diffusion parameter. 

In terms of the CTRW framework a power law p(s) can be considered in a decoupled 

form of  or, alternatively, directly in a coupled . With regard to the former a 

power law p(s) is not generally required. 

We conclude this section by pointing out also that the FDE approach, both temporal and 

spatial, does not recognize the transport velocity to be fundamentally different from the 

fluid velocity. Thus the FDE places the mechanism for non- Fickian behavior entirely 

on the value of the exponent controlling the (spatial or temporal) power law 

distribution. 

We stress once again that in contrast the CTRW formulation is more comprehensive: 

The memory function accounts for the nonlocal-in-time dispersion, whereas  

provides a measure of the local-in-space dispersion. 
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5. Conclusions 

 

Quantification of contaminant transport in geological formations has been a long-

standing problem. The difficulty in capturing the complexities of tracer plume migration 

patterns suggests that local, small-scale heterogeneities cannot be neglected; we have 

shown that these unresolvable heterogeneities contribute significantly to the occurrence 

of non-Fickian transport. Indeed, BTCs of passive tracers in even macroscopically 

“homogeneous” granular materials exhibit non-Fickian features: Early and late arrival 

times are observed to differ systematically from theoretical predictions based on 

solution of the ADE for uniform porous media. Even in these small-scale, 

“homogeneous” domains, subtle and residual pore-scale disorder effects can account for 

these observations. 

We have reviewed a recent, different approach to this problem based on a CTRW 

framework. The theory developed within this framework is structured by a conceptual 

picture of transport as a sequence of particle transfer rates. The starting point to arrive at 

the CTRW is the master equation, which describes the kinetics of the probability of site 

occupancy, incorporating these rates, for a single realization of an heterogeneous 

medium. The ensembleaveraged ME is the GME, which we show is equivalent to the 

CTRW, and serves as the transport equation. A particularly convenient approximation 

of this equation is the pde “similar” in form, in Laplace space, to the well-known ADE.  

On this basis we can state that the CTRW framework represents a powerful and 

effective means to quantify transport in a wide range of porous and fractured media. It 

enables calculation of both BTCs and the full temporal and spatial evolution of 

contaminant plumes, covering both the premacrodispersion and macrodispersion regime 

time ranges. Further, as the calculation does not resort to using perturbation theory, the 

results are valid for strongly heterogeneous formations (e.g., log hydraulic conductivity 

variance >10). The CTRW theory can be extended naturally to treat transport in 

nonstationary domains with specific conditioning information. 
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