

CArbon-14 Source Term

General Assembly Meeting 3 Minutes (D1.6) 14 - 15 October 2015 Bucharest

Author(s):

S. Williams and E. Scourse

Date of issue of this report: 27/09/2016

The project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 604779, the CAST project'			
Dissemination Level			
PU	Public	X	
RE	Restricted to the partners of the CAST project		
CO	Confidential, only for specific distribution list defined on this document		

CAST – Project Overview

The CAST project (CArbon-14 Source Term) aims to develop understanding of the potential release mechanisms of carbon-14 from radioactive waste materials under conditions relevant to waste packaging and disposal to underground geological disposal facilities. The project focuses on the release of carbon-14 as dissolved and gaseous species from irradiated metals (steels, Zircaloys), irradiated graphite and from ion-exchange materials as dissolved and gaseous species.

The CAST consortium brings together 33 partners with a range of skills and competencies in the management of radioactive wastes containing carbon-14, geological disposal research, safety case development and experimental work on gas generation. The consortium consists of national waste management organisations, research institutes, universities and commercial organisations.

The objectives of the CAST project are to gain new scientific understanding of the rate of re-lease of carbon-14 from the corrosion of irradiated steels and Zircaloys and from the leaching of ion-exchange resins and irradiated graphites under geological disposal conditions, its speciation and how these relate to carbon-14 inventory and aqueous conditions. These results will be evaluated in the context of national safety assessments and disseminated to interested stakeholders. The new understanding should be of relevance to national safety assessment stakeholders and will also provide an opportunity for training for early career researchers.

For more information, please visit the CAST website at: <u>http://www.projectcast.eu</u>

CAST			
Work Package: 1	CAST Document no.:	Document type:	
Task: 1	CAST-2016-D1.6	M = minutes	
Issued by: MCM	Document status:		
Internal no.: MCM-CAST-20	Draft/Review/Final		

Document title	
General Assembly Meeting 3 Minutes (D1.6)	

Executive Summary

The third General Assembly Meeting for the CAST Project was held on 14th and 15th October 2015 in Bucharest. These minutes record the main points discussed at the meeting and are Deliverable 1.6 for the CAST Project.

List of Contents

Executive Summary			i
Li	st of	Contents	iii
1		Introduction	4
	1.1	Welcome	4
	1.2	Attendees	4
2		Update on Work Package 2 (Steels)	5
3		Update on Work Package 3 (Zircaloys)	8
4		Update on Work Package 4 (Spent Ion-exchange Resins)	10
5		Update on Work Package 5 (Graphite)	12
6		Update on Work Package 6 (Safety Assessment)	14
7		Update on Work Package 7 (Dissemination)	18
8		Update on Work Package 1 (Coordination)	19
9		CAST Beneficiaries Session	20

1 Introduction

1.1 Welcome

The meeting was opened by Steve Williams who welcomed everybody and noted that Ellie Scourse and Erika Neeft were unable to attend and had sent their apologies.

Christophe Davies noted that the first call under Horizon 2020 had resulted in the funding of the JOPRAD, SITEX-II, CEBAMA, MIND and Modern 2020 projects. These had all started in June 2015. There were also two parallel projects ANNETTE (Advanced Networking for Nuclear Education and training and transfer of expertise) and HONEST (History of Nuclear Energy and Society) – the latter probably not including geological disposal. The EC was moving towards joint programming in radioactive waste management and geological disposal involving WMOs via IGD-TP. The Second call for Horizon 2020 was launched on 14th October. Euratom may be extended to 2020 to align with EU funding process.

1.2 Attendees

Name	Organisation
Mohamed Ali Bahri	Subatech / Armines
David Bottomley	JRC-ITU
Gunnar Buckau	EC-JRC
Manuel Capouet	Ondraf/Niras
Mauro Capone	ENEA
Miguel Cuňado	Enresa
Benjamin Cvetkovic	PSI
Christophe Davies	EC
Daniela Diaconu	RATEN ICN
Nikitas Diomidis	Nagra
Frank Druyts	SCK.CEN
Viorel Fugaru	IFIN-HH
Manuela Fulger	RATEN ICN
Dalia Grigaliuniene	LEI
Irka Hajdas	Independent Expert
Jaap Hart	NRG
Tiina Heikola	VTT

Viktor Jobbágy	SCK.CEN
Fraser King	Independent Expert
Solene Legand	CEA
Jose L Leganés	Enresa
Riccardo Levizzari	ENEA
Enrique Magro Lozano	Ciemat
Volker Metz	KIT
Jens Mibus	Nagra
Natalie Moncoffre	IPNL-CNRS
Sophia Necib	Andra
Simon Norris	RWM
Olli Nummi	Fortum
Christiam Postolache	IFIN-HH
Pascal Reiller	CEA
Corrado Rizzato	FZJ
Antonietta Rizzo	ENEA –check
Marina Rodriguez	Ciemat
André Rübel	GRS
Tomofumi Sakuragi	RWMC
Stéphan Schumacher	Andra
Natalia Shcherbina	FZJ
Steve Swanton	Amec Foster Wheeler
Nelly Toulhoat	IPNL-CNRS
Petr Vecèrnik	UJV Rez
Antonin Vokal	Surao
Steve Williams	RWM

2 Update on Work Package 2 (Steels)

In Work Package 2 the D2.1 literature survey has been completed and published on the CAST website. The development of analytical development procedures has concluded and the resulting reports from PSI and Armines (D2.3 and D2.4) are in progress. The corrosion experiments are about to start. The Year 2 annual report from WP2 will be finalised in October.

A joint WP2 and WP3 technical meeting was held 27th and 28th May 2015 and followed by a workshop on analytical methods on 29th May 2015. One topic of discussion at the analytical workshop was provision of standard solutions for QA of solution analyses and to

allow comparison of methods for stable carbon or carbon-14 (hereafter stated as 14 C') in solution. Any interested groups should contact Erich Wieland.

The major problem with ¹⁴C speciation analysis in the systems of relevance to CAST is the low concentration of ¹⁴C-containing species. This has resulted in the drive towards developing ¹⁴C Accelerator Mass Spectrometry (¹⁴C-AMS) as a speciation method, by coupling with ion-chromatography (IC-¹⁴C-AMS) for dissolved compounds and gas-chromatography (GC-¹⁴C-AMS) for volatile compounds. This is being developed by PSI through collaboration with University of Bern and the development of techniques to oxidise ¹⁴C-compounds to ¹⁴CO₂ for ¹⁴C-determination. It is hoped that the combustion route for GC-¹⁴C-AMS will be installed by end of October. The final goal is on-line separation and oxidation of hydrocarbons, alcohols and aldehydes, trapping these as ¹⁴CO₂ and transferring the trapped ¹⁴C to the ¹⁴C-AMS for analysis. The separation system means that other radionuclides are not present in the samples sent for ¹⁴C-AMS (the use of ion exchange to remove cations from solution samples is discussed in WP3).

The activation calculations in WP2 have been slightly delayed and LEI are now not able to contribute to this. The irradiation details will be distributed to those undertaking the activation calculations. However, the real nitrogen concentrations in the steels prior to irradiation are often not known. Manufacturers' specifications only usually give the maximum allowed nitrogen concentration. The use of such values in activation calculations gives rise to uncertainties in the calculated ¹⁴C inventories (often too high by a factor of 3 to 4). Measurements of real nitrogen values would lead to more reliable ¹⁴C values from activation calculations and SCK.CEN have offered to measure nitrogen in unirradiated samples.

The workshop discussed sample preparation prior to the corrosion experiments and agreed that there should be 'as little as possible' pre-treatment, rather than the use of standard pre-treatment methods. Corrosion rates would be monitored during the tests, e.g. by measuring ⁶⁰Co and assuming this is released congruently during corrosion. The reliability of this assumption will depend on the number of measurements that can be made during the experiments. There is some evidence for an 'instant release fraction' from steels, which may

6

be connected to release from oxide film. This may be an important contributor to the release of ¹⁴C in the experiments but its importance can be judged by measuring ¹⁴C releases with time.

The duration of the corrosion tests will be one year. Redox potentials will be measured. Two possible solutions may be used: either Ca(OH)₂ solution at pH 12.5 or NaOH solution at pH12.5, depending on the risk of ¹⁴CO₂ precipitation and the analysis methodology. Sodium hydroxide will have a higher background level of ¹⁴C than calcium hydroxide. Analysis of solution and gas phases will be either by pre-concentration and liquid scintillation counting (LSC) or by ¹⁴C-AMS. LSC is not sensitive enough to determine speciation directly so AMS will be required. Quantitative detection limits need to be known in cases where concentrations of ¹⁴C are not measurable. ¹⁴C-AMS may become available in Seville through a contact of Marina Rodriguez.

All but one of the test samples required for WP2 have now been obtained and all but two of the beneficiaries in WP2 have their C14 sampling arrangements in place already. The corrosion tests with activated samples are expected to start in the first half of 2016.

Some recent results include:

- RWMC have determined a corrosion rate of 0.4 nm y⁻¹ for stainless steel and found the amorphous oxide layer to be 3 to 4 nm thick;
- in tests with inactive steel PSI have found that the amount of organic material varies with method of manufacture and is released in first few days of an immersion test, mainly as formic and acetic acids;
- SCK.CEN also found that the main contribution to organic ¹⁴C is likely to be acetic and formic acids;
- VTT have found that releases of inorganic carbon from stainless steel and iron carbide are below detection limit, only organic carbon.

3 Update on Work Package 3 (Zircaloys)

Task 3.1 is complete in Work Package 3 and the state of the art report (D3.1) has been published on the CAST website. The specification of nitrogen content for different types of cladding (PWR = Zircaloy-4, M5TM and ZirloTM, BWR= Zircaloy 2) is <80 ppm and generally 40 to 80 ppm. Zircaloy reacts with water to form an oxide:

$$Zr + 2 H_2O = ZrO_2 + 4 H_2$$

The oxide thickness depends on temperature and burn up. Some of the hydrogen is picked up by the zirconium and, for example, this can reach about 15% in a PWR. At low temperatures all the hydrogen forms hydride. The Zircaloy corrosion rate is affected by stability of the oxide layer and could be about 20 nm y⁻¹ in alkaline solution at room temperature.

In a similar manner to steels, most ¹⁴C estimates from calculations are overestimates because of the use of the specification levels of nitrogen (40-80ppm). The specific activity of ¹⁴C in the oxide is greater than in the metal, with about 80% of the ¹⁴C in the metal and 20% in the oxide.

Analytical development in conjunction with WP2 under Task 3.2 is now complete. The focus in WP3 has been on leachate analyses and is being undertaken by CEA and Subatech. CEA are responsible for methods of analysis for distribution between organic and inorganic ¹⁴C, CEA and Subatech are responsible for methods for speciation of small carboxylic acids and CEA are responsible for speciation of other organic molecules:

- total ¹⁴C quantification by pyrolysis followed by LSC or ¹⁴C-AMS (about 10³ factor better detection than LSC);
- organic / inorganic ¹⁴C distribution acidification to remove ¹⁴C-carbonate followed by pyrolysis to determine ¹⁴C-organic. Inorganic 14C calculated by difference from total ¹⁴C;
- speciation studies (Fourier transform infrared (FTIR) for functional groups, IC for small carboxylic acids, GC-MS for low MW volatile organic molecules and

Electrospray–mass spectrometry (ESI-MS) for mw>100) require desalination and pre-concentration to prepare samples;

- the ability of ESI-MS to differentiate molecules of a carboxylic acid (palmitic acid) mono-labelled and uniformly labelled with ¹⁴C from the ¹²C equivalent has been demonstrated;
- the use of KCFC resin and Chelex 100 resin in combination to reduce total activity in solution (Cs and Co/Fe/Ni/Sr respectively) has been shown to remove at least 95% of the radioactivity in solution;
- the detection limit for ¹⁴C by Quantulus LSC for an individual sample is about 0.01Bq;
- contact has been made with AMS facility at Saclay.

Some recent results from the leaching and corrosion studies include:

- corrosion rates of unirradiated Zircaloy in RWMC studies have been shown to decrease with time over 2 to 4 years to between 10⁻³ to 10⁻² µm y⁻¹ in pure water, sodium and calcium hydroxide solutions and in cement porewater, with the corrosion rate slightly lower in pure water;
- RATEN-ICN have measured corrosion rates of 3 to 480 nm y⁻¹ for unirradiated Zircaloy-4, oxidised samples (2.7 µm oxide film) have lower corrosion rates than 'as received' samples and the corrosion rate in aerated water is higher than in deaerated water for both;
- RWMC have found that some ¹⁴C might be incorporated in the oxide layer as release appears congruent with release of ⁶⁰Co and ¹²⁵Sb but not with the corrosion rate of the Zircaloy metal;
- dissolution of irradiated Zircaloy-4 in H₂SO₄/HF by KIT results in the release of ¹⁴C to gas and to solution, almost all the carbon-14 is released as organic compounds (with about 10% of this in solution and the rest as gas) and the total ¹⁴C agrees well with the calculated inventory (the next stage will be to investigate the effect of a hydrogen overpressure and then look at release under alkaline conditions).

The Year 2 annual report for WP2 has been drafted, but report D3.9 is delayed. A joint WP2 and WP3 meeting will be held in Madrid, hosted by CIEMAT, in May 2016.

From the results obtained to date the corrosion rate of Zircaloy would be around 1 nm y⁻¹ if it was estimated from the rate of ¹⁴C release, but would be about 0.01 nm y⁻¹ based on the release of Zr to solution. This shows that understanding the release of ¹⁴C requires further understanding of the role of the oxide film and the nature of the ¹⁴C in this and the parent metal, and also on the effect of the hydride layer (which might give increased release rates).

4 Update on Work Package 4 (Spent Ion-exchange Resins)

It was confirmed that the spent ion-exchange resins (SIERs) samples necessary for the work programme of Work Package 4 have now been received.

<u>SIERs from PWRs</u> - EdF have supplied 5 samples to CEA, ENEA have SIER from Trino, SKB have numerous samples taken between 2009-2104 from Ringhals, UJV have SIER from Temelin (it is possible that UJV may acquire a further 2 samples but any work on these would be additional to their proposed scope of work under CAST) RATEN-ICN have received CANDU samples from Cernovoda.

<u>SIERs from BWRs</u> – FZJ have obtained 3 samples of BWR SIERs, SKB have numerous samples taken between 2009 -2013 from Forsmark and Oskarshamn.

A WP4 technical meeting was held on 4th and 5th June 2015 in Paris. At this meeting it was agreed that leaching in sodium hydroxide solution at pH 12.5 would be used to represent the high alkalinity of cementitious disposal conditions.

CEA have compared analysis by oxidation under oxygen at 25 bar or by sequential acidification and acid digestion (which also provides the inorganic (carbonate) and organic ¹⁴C contents). Both methods gave the same result for the total ¹⁴C content of a wet sample (and about three quarters of the ¹⁴C was inorganic). However, there was a large discrepancy between the results from the two methods for a dried sample and this will be investigated further. The methodology for determining the speciation of ¹⁴C in solution is being developed. Unfortunately, it has not proved possible to couple the existing liquid

scintillation counting equipment to ion chromatography, so the use and qualification of ESI-MS is being investigated as described for WP3 above. Palmitic acid is being used as a model compound for this. Although this is a relatively high MW species it was thought possible that large molecules could be present in solution through scission of the polymer backbone and subsequent secondary reactions. Previous work by Hummel and Van Loon on the degradation of ion-exchange resins had been unable to identify all the degradation products in solution, showing the difficulty of analysing a real mixture of unknown degradation products.

FZJ have demonstrated the ability to separate anion exchange resin from cation exchange resins in mixed bed resin bead samples using vertical solution flow. The anionic resin rises towards the top of the column but the method cannot be used for powder samples. The degradation of ion-exchange resins under gamma irradiation is being studied. There was some discussion of how degradation might affect ¹⁴C release with the expectation that the bonds to the functional groups would break first (e.g. leading to the loss of amines from anion-exchange resins), with the backbone structure of cross-linked divinylbenzene being much more stable. Associated ¹⁴C could thus be released more rapidly as the material ages and could also be involved in secondary reactions.

ENEA closed their ¹⁴C laboratory in November 2014 and relocated this to a new facility that became operational in September 2015. There is new equipment for investigating ¹⁴C release at different stepped temperatures (950°C to 1200°C) with collection of the resulting ¹⁴CO₂. Samples of 10-year-old resin and new fresh material are being studied to determine whether the degradation seen in the 10 year old samples is because of storage or whether such degradation is present in original material. ENEA have been selected as a 'beta-tester' for a new instrument for ¹⁴C determination based on Cavity Ring Down Laser Spectrometry and will have the opportunity to apply this to the CO₂ fractions obtained from the ion exchange resins.

RATEN-ICN will determine the ¹⁴C inventory of SIERs from the Cernovada CANDU nuclear power plant, measure leaching of ¹⁴C under cementitious conditions and consider the effect of storage conditions. SIERs are stored under water in concrete vaults lined with

epoxy at the power plant but no sampling or ¹⁴C measurements on these resins has been undertaken. SIER samples for use in CAST were taken during maintenance of Unit 1. Total ¹⁴C will be determined by destructive oxidation and the resulting ¹⁴CO₂ trapped with Carbo-Sorb and measured by liquid scintillation counting. Preliminary tests with Amberlite IRN-150 labelled with ¹⁴C have shown a typical recovery around 97% and that memory effects from previous samples should not be a problem. Tests are ongoing to assess any potential interference from other radionuclides in spent resins. Inorganic/organic ¹⁴C will be determined by acid dissolution and wet oxidation based on the method of Magnusson et al (2008) with measurement by LSC. The acid dissolution step has been trialled and refinement of the experimental design for this has increased the ¹⁴C recovery from about 80% to 92%. The next step will be to complete the experimental design by adding the catalytic furnace to complete the ¹⁴C trapping chain and trialling the wet oxidation step with labelled IRN-150, prior to determining the ¹⁴C content of the Cernovoda SIERs.

5 Update on Work Package 5 (Graphite)

Progress on reports for Year 2 of WP5 is as follows:

- D5.4 Definition of the scientific scope of leaching experiments and definition of harmonised leaching parameters in progress, draft available;
- D5.5 Review of current understanding of inventory and release of C14 from irradiated graphite published;
- D5.6 Annual progress report, Year 2 in progress, draft available;
- D5.7 Report on C14 distribution in irradiated graphite from the research reactor VVR-S using accelerator mass spectrometry and beta imaging – delayed because of issue with accessing samples.

It is often difficult to compare the results of different graphite leaching experiments because of different experimental conditions (often driven by different acceptance criteria or needs of national programmes). As part of Task 5.3 FZJ, in conjunction with other WP5 participants, have reviewed the range of leaching methodologies that have been used and developed a methodology for harmonized leaching conditions that may be used in CAST. This considers the following: vessel material; specimen geometry; temperature; leachant; gas composition; sampling interval; test duration; leaching regime; and analyses and is described in the D5.4 report. Adoption of the recommendations should minimise the differences between experimental approaches and enable a more straight forward comparison of the results of ¹⁴C leaching experiments in different laboratories.

INR are undertaking studies on the measurement of release of ¹⁴C from graphite from the TRIGA research reactor. TRIGA was a double-core material testing reactor and the graphite arises from the thermal column of the steady state reactor (TRIGA SSR, 14 MW). The thermal column consists of 96 rectangular bricks of graphite (approximately 2.5t in total) encased in aluminium and placed in a stainless steel frame in the reactor pool. The graphite was imported in the 1950s from the UK. Attempts were made to determine the nitrogen content of unirradiated graphite samples by acid digestion but these were unsuccessful with no nitrogen detected and it is possible that gaseous nitrogen was lost prior to analysis. Total ¹⁴C measurements for the TRIGA graphite by combustion under oxygen and trapping of the resulting ¹⁴CO₂ for liquid scintillation counting have given results in the range 0.8×10^3 to 1.9×10^3 Bq for 0.2g powdered samples. Leaching experiments on 50 mm diameter cylindrical specimens in sodium hydroxide solution at approximately pH 13 under anaerobic conditions at 25 C are about to start. The inorganic/organic ratio of ¹⁴C in leachates from the TRIGA graphite will be determined by acid stripping followed by wet oxidation in a similar manner to the SIER leachates in WP4.

Understanding of the effects of neutron irradiation on ¹⁴C behaviour in graphite is being increased through studies by IPNL using ¹³C implanted HOPG (highly oriented pyrolytic graphite) as a simulant. In reactors, neutron irradiation causes atom displacement cascades leading to mainly ballistic damage and recoil carbon atoms transfer some energy through electronic excitation. Ion beam irradiation can be used to promote either ballistic damage or electronic excitation effects depending on the ion mass and its energy. Most of the ¹⁴C in irradiated graphite occurs in the grains and ¹³C is implanted at a depth of 200 to 400 nm in HOPG to simulate this. Samples are then ion irradiated under an inert atmosphere or coolant gas simulant at temperatures from room temperature up to 1000°C. Ballistic damage does not promote ¹³C release and irradiation at increased temperature leads to a re-ordering of the graphite and the ¹³C may be stabilised into new sp² bonding structures. In contrast electronic

13

excitation does not promote ¹³C release, and shows very little reordering of the structure with increased temperature, and the ¹³C may be stabilised into sp³ bonding structures. Thus, whatever the irradiation regime, ¹³C is not released and is stabilised into the graphite structure where increased temperature and irradiation have opposing effects leading to reordering and disordering respectively. This leads to the conclusion that ¹⁴C in the grain structure of irradiated graphite would be stabilised into new structures with increasing temperature. In the context of possible pre-treatment of irradiated graphite prior to disposal this implies that the stabilised ¹⁴C should be more difficult to remove but it also implies that leaching of ¹⁴C should be reduced under disposal conditions.

ENEA are investigating the ability of ultrasonic treatment in organic solvents to exfoliate and decontaminate irradiated graphite. Trials with HOPG and unirradiated nuclear graphite have shown that the exfoliation behaviours of both are similar and yields of 2 to16 wt% graphene are achieved. The formation of graphene indicates that the process has worked therefore ¹⁴C should be removed to some extent. The next steps are to apply the process to irradiated graphite from the Latina NPP and evaluate decontamination factors for ¹⁴C. Further optimisation can then be undertaken.

6 Update on Work Package 6 (Safety Assessment)

The first report fromWP6 titled 'Handling of C-14 in current safety assessments - State of the art' (D6.1) is under final review and should be published by the end of 2016. The next stage in WP6 is to contextualise the knowledge base against current safety assessment hypotheses to develop the D6.2 report. This considers:

- ¹⁴C inventories;
- ¹⁴C source terms; and
- the transport of ¹⁴C in clay, crystalline rock and salt disposal systems.

Tasks 2, 3, 4 and 5 of CAST will provide input to the first two of these three bullet points for steels, Zircaloys, SIERs and graphite. However, another source of ¹⁴C is irradiated spent fuel. Although this is outside the scope of the experimental work in CAST, irradiated uranium oxide can make the major contribution to the ¹⁴C inventory of a spent fuel rod from

a light water reactor (LWR). Typically, 10 to 15% of the ¹⁴C in irradiated uranium oxide is treated as an instant release fraction (IRF) when water contacts the fuel after repository closure in safety assessments. In irradiated Zircaloys, the ¹⁴C in zirconia is considered to have an IRF (which may be all the ¹⁴C in the oxide and may be released as inorganic carbon) and the ¹⁴C in the metal cladding to be homogeneously distributed (which may be released as organic carbon). In assessing Zircaloy hulls arising from reprocessing of spent fuels the assumptions may include the absence of an IRF for ¹⁴C because of the acidic reprocessing treatment.

The ¹⁴C inventory in irradiated steels has been assumed to be homogeneously distributed as carbides that react with water on corrosion of the metal to form dissolved organic species or methane. Although no ¹⁴C IRF is usually assumed, in some cases a value of 10% has been used. Depending on their thickness, reactor internal components may be treated as a number of layers to take account of different activation levels at depth.

In many cases the ¹⁴C in spent ion-exchange resins has not yet been specifically considered in safety analyses. Carbon-14 could be released during storage and waste conditioning (e.g. during drying). Assumptions about a ¹⁴C IRF and speciation for SIERs differ but at least 25% is usually assumed to be inorganic and assumed release rates may be dependent on the waste packaging and its ageing.

In disposal systems in a clay host rock, diffusion combined with radioactive decay can be very effective in limiting the transport of dissolved ¹⁴C. The ¹⁴C speciation may have an important influence on the diffusion rate but, because of its relatively rapid decay compared to disposal timescales, even weak sorption can reduce the effective dose rate from ¹⁴C by one or more orders of magnitude. If isotopic exchange occurs between carbonate and calcite this could lead to efficient retardation of ¹⁴C. In contrast, the behaviour of organic ¹⁴C is not as well known. Methane is often conservatively assumed, which could with dissolve in porewater or migrate as a free gas mixed in a bulk carrier gas. Retardation is often conservatively neglected. Depending on the gas pressure and the properties of the host clay migration of a free gas phase could be through two-phase flow, pathway dilation or gas–induced fracturing (for more details see reports from the EC FORGE project). In a clay

15

system ¹⁴C is generally not a concern for HLW because of a containment period of at least several tens of thousands of years and the stability of the HLW matrix. Larger uncertainties exist in current assessments for ILW because containment time (if any is assumed) is much less than transport time and much more hydrogen gas could be formed. This leads to different scenarios of strongly-retarded diffusive transport and unretarded gas transport. However, ¹⁴C may not be a primary determinant of safety in either case for a clay host rock.

In disposal systems in a crystalline host rock, the use of high integrity containers (e.g. copper) for spent fue1 means that ¹⁴C will have decayed during the period of physical containment by the canister. However, ¹⁴C can be an important contributor to dose from ILW in a crystalline rock where transport time along a fracture network may be short compared to the half-life of ¹⁴C if uptake from solution is weak. For Zircaloy wastes an assumption of instantaneous release of ¹⁴C from the oxide can have a non-negligible radiological impact.

In disposal systems in salt, a fill (e.g. such as salt grit) around waste containers will be compacted by the creep of the host rock leading to low permeability and porosity. Transport of dissolved ¹⁴C would be by diffusion and very slow.

In concrete and cement-based engineered barrier systems small organic molecules are only weakly-sorbed, and may be affected by ageing (e.g. reduction of pH), although carbon dioxide is removed from solution through carbonation. Thus, there is considerable uncertainty in a safety assessment treatment of ¹⁴C as dissolved organic molecules in a cement-based system.

Post-closure safety cases need to reflect an understanding of uncertainties. In the context of ${}^{14}C$ these include the inventory and distribution of ${}^{14}C$ in waste streams, the speciation of released ${}^{14}C$, rates of release from wastes including any rapid release (which may be treated as an IRF) and long-term corrosion behaviour of metals, retention factors (e.g. K_d/R_d) for organic compounds particularly in cement, stability of ${}^{14}C$ species in evolving repository conditions and during migration in the geosphere.

Some key themes that are emerging from WP6 are:

16

- the findings from CAST can provide qualitative arguments to support safety cases as well as quantitative data that feed into dose curve calculations;
- understanding of dissolved ¹⁴C speciation will contribute to understanding potential retardation in cement and bentonite/clay systems;
- IRFs may have a non-negligible impact in some disposal concepts and the results from CAST may underpin or identify conservatisms in assumed values;
- a consistent understanding of ¹⁴C inventories is important;
- it is important to consider how the experimental results relate to disposal conditions in different concepts and how they might be extrapolated over timescales of concern as conditions evolve.
- ¹⁴C may be released from some wastes during waste packaging and conditioning and during interim storage - this may reduce the inventory of ¹⁴C in some waste packages at the time of closure of a disposal facility.

INR presented an overview of the possible impact of microrganisms on ¹⁴C speciation and migration. This covered the existence of microbial populations in deep geological environments, biochemical processes and potential effects on ¹⁴C behaviour. An example of the inclusion of biogeochemical processes in modelling ¹⁴C releases was given from the environmental safety case for the low-level waste repository (LLWR) in the UK. The conclusions of the overview were: ¹⁴C can be subject to biogeochemical processes that can lead to changes in speciation and partitioning between solid, liquid and gas and depend on a number of factors; migration of radionuclides because of sorption of microorganisms seems to be negligible; oxidation of migrating of ¹⁴CH₄ to ¹⁴CO₂ in the surface environment leads to plant uptake of ¹⁴C.

There was some discussion on the ability of microbes to degrade organic polymers. It was noted that some polymers are quite resistant to microbial attack although additives leached from the polymer (e.g. plasticisers from polyvinylchloride) may be more susceptible. It may be necessary for other processes, such as chemical or radiolytic degradation, to break down the polymer structure to facilitate further degradation by microbial action. It is possible that complexing agents could be destroyed by microbes. In a cement system carbon dioxide will be trapped by carbonation of cement. Conditions may be more favourable for microbial activity in wastes during storage than in the high pH conditions associated with wastes grouted with cements. Microbes will tend to prefer the lighter isotopes of an element and thus some fractionation of isotopes occurs continuously in the natural environment. The impact of such effects for the isotopes of carbon are likely to be negligible compared to other uncertainties.

A WP6 technical meeting will be hosted by Nagra in Q1 or Q2 of 2016. This will focus on retention processes in clay, bentonite and cement but will include discussions on the preliminary integration of CAST results into safety cases. There will be an invited expert presentation on BIOPROTA. The D6.2 report should be completed in early 2016.

7 Update on Work Package 7 (Dissemination)

The first training course in CAST is organised by KIT on "C-14 behaviour under repository conditions" and is planned for 23rd - 24th February 2016 at Karlsruhe. It will comprise lectures, practical radiochemical training and a visit to a radioactive waste treatment facility. The course aims to provide an understanding of different ¹⁴C-containing waste stream, origins and hazards and their waste management.

Some aspects of WP7 are lagging behind the original schedule and it will be necessary to amend the schedule to reflect this as follows:

Deliverable	Title	Current delivery month	Revised delivery month
D7.6	Progress overview for Workshop1 (submission of scientific paper)	20	28
D7.7.	Overview of achievements on technical results for regulators for	20	28

	Workshop 1 (draft report)		
D7.8	Workshop 1 (logistics, announcements, documentation, brochures etc)	22	27
D7.10	Workshop1	28	31
D7.11	Workshop 1 proceedings	28	31
D7.12	Newsletter 3	28	31

8 Update on Work Package 1 (Coordination)

Twenty three of CAST's deliverables had been completed and all the first year milestones had been achieved. An overview of the CAST project had been presented by the coordinator at the Nuclear 2015 conference held at Mioveni on 27th - 29th May 2015 and a paper based on the presentation has been submitted to the Journal of Nuclear Research and Development.

The CAST templates would be updated shortly to remove the FP7 logo and reword the acknowledgement to:

"The project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 604779, the CAST project."

Nagra had kindly offered to make arrangements for the next General Assembly Meeting, which will be held in Switzerland in October 2016.

9 CAST Beneficiaries Session

Steve Williams noted that he would be retiring at the end of 2016.

The following decisions were then agreed by majority votes of the CAST beneficiaries:

- The re-scheduling of WP7 deliverables as described above in Section 7 21 votes in favour, no votes against.
- 2. The replacement of Steve Williams by Simon Norris as coordinator 25 votes in favour, no votes against.
- The possible addition of KORAD as a CAST beneficiary 17 votes in favour, no votes against.

Steve Williams closed the meeting by thanking Daniela and Viorel for all their work in organising the meeting and all the participants for their contributions.

Figure 1: Members of the CAST consortium at the General Assembly Meeting, Bucharest, October 2015.