

Prediction of the key physico-chemical parameters of geological barriers through detailed mineralogical analysis: case study of the Boom Clay (Belgium)

Lander Frederickx^{1,2}, Miroslav Honty¹, Norbert Maes¹ & Christophe Bruggeman¹ ¹ Belgian Nuclear Research Centre, SCK•CEN, Mol, Belgium ² Department of Earth and Environmental Sciences, KU Leuven, Belgium E-mail: mhonty@sckcen.be

Context & Objectives

Clay host rocks play a central role in the geological disposal concepts of several countries, as they will be responsible for the long-term retention of radionuclides. An in-depth characterization of the host rock is necessary to gauge the sorption and retention capacities of the formation as a whole. Key characteristics include the grain size, mineralogy, cation exchange capacity (CEC), specific surface area (SSA), etc.

It is unfeasible to measure all these properties in detail on a formation scale, so we demonstrate a cost-effective way to acquire as much information as possible with a relatively small characterization campaign. The properties mentioned above are measured in a small sample set representative of the host formation. The acquired data is used as a training set for a statistical model, in which all properties are predicted by using the grain size distribution. This translates into a significant reduction of the analyses required to characterize a host formation in detail.

Samples

- Boom Clay formation
- ON-Mol-1 borehole \bullet
- 20 samples from all stratigraphic members

Methods

- X-Ray Diffraction • Mineralogy
- **Grain Size** SediGraph \bullet
- CEC Exchange of Cu-trien \bullet
- Figure 1: Stratigraphic positions of the • training data in the Boom Clay.
- SSA N₂ physisorption (BET)

Grain Size Data

- Boom Clay samples
- ON-Mol-1 borehole
- 213 SediGraph measurements from present and past studies

Figure 2: Ternary diagram of all 213 grain size measurements.

Predicting mineralogy with grain size data

Predicting CEC and SSA with grain size data

Conclusion & Perspectives

- A relatively small training set, characterized in detail, combined with a large data set of grain size measurements, proved sufficient to \bullet predict key physico-chemical parameters and mineralogical components of the Boom Clay formation.
- This approach can be adapted to other (clay) formations and clay properties.
- In order to further reduce analysis requirements, we are looking into relating the properties of the clay host rock to well logging ulletmeasurements (i.e. NMR, µ-resistivity). If successful, a full prediction of these properties can be made for the entire logged profile.

Acknowledgements: The authors thank ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials for providing the clay cores on which the study was carried out.

Boeretang 200 || BE-2400 Mol || www.sckcen.be || info@sckcen.be || SCK•CEN Posternr: