

Spent Fuel Characterization and Evolution Until Disposal

Joaquin Cobos/CIEMAT, on behalf of the WP coordination team Berlin, 3-4 December 2018

IGD-TP EF8 3-4 December 2018

	Name	Organisation	Country	Type (WMO, TSO, RE)
Main coordinator	Peter Jansson	Uppsala University	SE	RE
Subcoordinator	Stefano Caruso	NAGRA	СН	WMO
Subcoordinator	Joaquin Cobos	CIEMAT	ES	TSO

Content of presentation

- I. WP Main Objectives
- 2. WP Expected impacts
- 3. WP Participants
- 4. WP Task Breakdown and WP Board
- 5. WP Planned resources
- 6. WP Tasks' descriptions
- Key challenges and objectives in the first year to communicate near-term focus

SFC - Main Objectives

- Experimental procedures to estimate the isotopic content of SNF & uncertainties.
- Establish <u>characterization techniques</u> for SNF during its evolution from reactor to disposal.
- **Uncertainty quantification** on the evolution of SNF in pre-disposal activities.
- Performance of the SNF during pre-disposal, to build basis for safety concepts/culture.
- Ageing effect & behavior of fuel, cladding, fuel-cladding interaction under normal and accident conditions.
- Contribute to the operational safety concepts for fuel handling at SNF packaging facilities.
- **Education, training** and building **competences** in the subject.

WP Expected impacts

Radiactive Waste Management implementation needs

Reduced uncertainty of the decay heat conomical savings DGR.

Safety Analysis and Assessment

- Reduced uncertainties on safety.
- Guidance on operational safety of interim storage & fuel packaging facilities.
- Safety assessment on pre-disposal technologies could predict the consequences of design changes.
- Increasing scientific and technical Knowledge in RWM
 - Fuel & cladding: thermomechanical/chemistry degrading mechanisms.
 - Identification gaps and propose beyond the SOTA.
 - Increase knowledge to the European concept/strategy.
 - Models and experimental understanding of the SNF-rod behavior .
- Radioactive waste management routes
 - WP will meet WMO's, regulatory bodys, RE's and TSO's Stategy.
 - Contribute to implement EU directives and comunications.

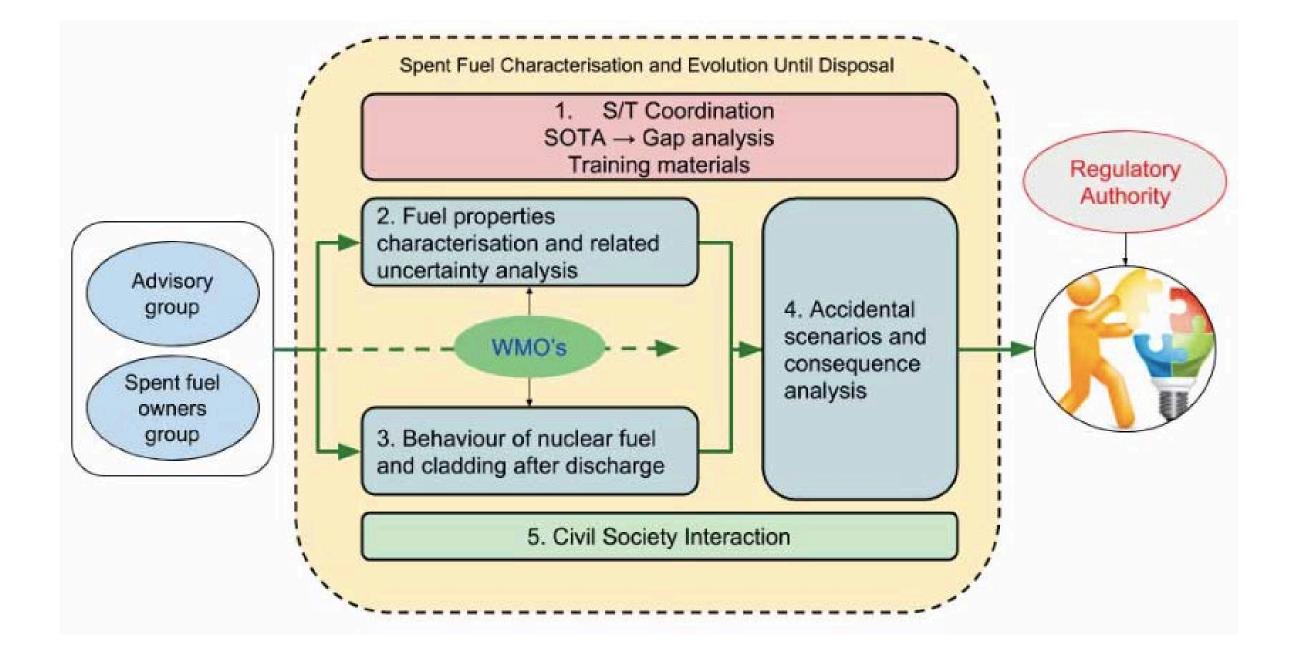
SFC Participants

Organisations

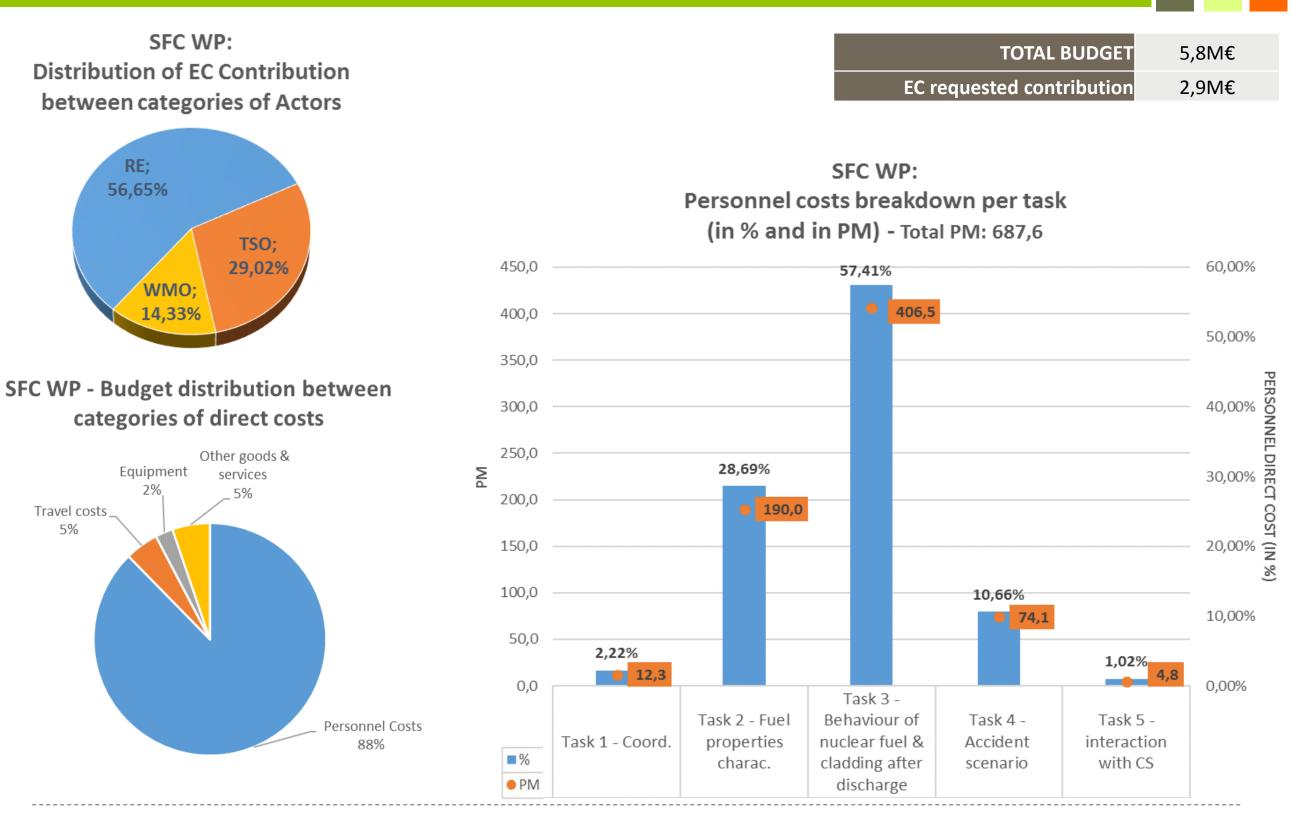
- ✓ **CEA**, France (RE)
- ✓ **CHRDI**, Ukraine (WMO)
- ✓ **CIEMAT**, Spain (TSO)
 - IDOM, Spain
 - UPM, Spain
- ✓ **CNRS**, France (RE)
 - Umontpellier, France
- ✓ ENRESA, Spain (WMO)
 - ENUSA, Spain
- ✓ **CPST**, Lithunia (TSO)
- ✓ **FZJ**, Germany (RE)
 - HZDR, Germany
- ✓ **IRSN**, France (TSO)
 - NTW, France
- ✓ JRC, Belgium (RE)
- ✓ **JSI**, Slovenia (TSO)
 - EIMV, Slovenia

Organisations

- ✓ **KIT**, Germany (RE)
 - BAM, Germany
 - PEL, Germany
- ✓ LEI, Lithuania (RE)
- ✓ MTA EK, Hungary (RE)
- ✓ **NAGRA,** Switzerland (WMO)
- ✓ **PSI**, Switzerland (RE)
- ✓ **SCK-CEN**, Belgium (RE)
- ✓ **SKB**, Sweden (WMO)
 - UU, Sweden
- ✓ **SSTC NRS**, Ukraine (TSO)
- ✓ **SURAO**, Czech Republic (WMO)
 - CTU, Czech Republic
- ✓ TUS, Bulgaria (RE)
- ✓ VTT, Finland (TSO)


Interested external parties

Organisation	
Chalmers University of Technology	
Czech Radioactive Waste Repository Authority (SÚRAO)	
Electric Power Research Institute (EPRI)	
Endesa	
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)	
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)	
Kharkov Institute of Physics and Technology	
Lawrence Livermore National Laboratory	
National Nuclear Laboratory	
Oak Ridge National Laboratory	
OECD NEA Data Bank	
Pacific Northwest National Laboratory	
Radioactive Waste Management (RWM)	
Studsvik (SCIP project)	
Swedish Academic Initiative on Nuclear Technology Research (SAINT)	
TS Enercon	
University of Bristol	
Tokyo Institute of Technology	


WP – Task Breakdown and WP Board

- Main coordinator, Peter Jansson, Uppsala University
- Contact info: <u>peter.jansson@physics.uu.se</u>, +46184715841
- Task I S/T coordination, State-of-the-art and training material.
 - ► Task Leader (SKB/UU)
- Task 2 Fuel properties characterisation and related uncertainty analysis Start.
 - Task Leader (JRC Geel/SCK-CEN)
- Task 3 Behaviour of nuclear fuel and cladding after discharge.
 - Task Leader (KIT/BAM)
- Task 4 Accident scenario and consequence analysis
 - Task Leader (CIEMAT/NAGRA)
- Task 5 Civil Society (CS) interaction
 - Task Leader (JSI/EIMV)

Structure of the SFC WP

WP – Planned resources

10

IGD-TP EF8

3-4 December 2018

WP – Task 1 – S/T coordination, State-of-the-art & training material

Task Leader: SKB (UU)

• Objective:

- Provide efficient management and administration of the work package
- Identify potential problems at an early stage and provide timely and effective solutions.
- Developing/updating SOTA and training materials as an input to KM.
- Subtask I.I S/T coordination
- Subtask I.2 State-of-the-art and Gap analysis
- Subtask I.3 Training materials

WP – Task 2 - Fuel properties characterisation and related uncertainty analysis

- **Task Leader**: JRC- Geel
- Objective: Produce experimentally verified procedures to determine reliable source terms of spent nuclear fuel (SNF), including realistic uncertainties.
 - Subtask 2.1 Theoretical study of SNF source terms: Timescale 48 months. Subtask Leader PSI
 - Subtask 2.2 Develop, improve and demonstrate NDA methods/systems for SNF characterisation. Timescale 48 months.
 Subtask Leader SCK.CEN
 - Subtask 2.3 Determine the inventory of activation and fission products in cladding material. Timescale 48 months. Subtask Leader VTT.
 - Subtask 2.4 Define and verify procedures to determine the source terms of SNF assemblies with realistic confidence limits. Timescale 35 months. Subtask Leader KIT.

WP – Task 3 - Behaviour of nuclear fuel and cladding after discharge

Task Leader: KIT (BAM)

- Objective: Understand and describe numerically the behavior of SNF, irradiated cladding, fuel/cladding chemical interaction (FCCI) and ageing effect under conditions of extended interim storage, transportation and emplacement in a final disposal system.
 - Subtask 3.1 Thermo-mechanical-chemical properties of the SNF rods and cladding Timescale 48months. Subtask Leader CIEMAT (UPM).
 - Subtask 3.2 Behaviour of SNF pellets under interim storage conditions. Timescale 48 months. Subtask Leader CIEMAT.
 - Subtask 3.3 Pellet-cladding interaction under conditions of extended storage, transport and handling of SNF rods. Timescale 48months.
 Subtask Leader CIEMAT

- **Task Leader**: CIEMAT (NAGRA)
- Objective: Study SNF behaviour under accident conditions which may lead to a potential loss of confinement during storage, transport and pre-disposal activities.
 - Subtask 4.1 Accident scenario for fuel under dry interim storage conditions Timescale 48 months. Subtask Leader NAGRA.
 - Subtask 4.2 Consequence analysis of accident scenarios
 35 Months. Subtask Leader ChRDI.

- **Task Leader**: JSI (EIMV).
- **Objective**: To follow by the CS the work conducted in the WP by using a CS interaction framework developed and established for EURAD, facilitating the translation of results and other output of the WP to the civil society. Finally the task 5 will enhance the possibilities of CS participation in future situations where there are consultation processes as a part of safety case review.
 - Subtask 5.1– Scoping of SFC tasks 2-4, initial input from the CS experts and development of Interaction with Civil Society (ICS) action plan. Timescale 12 Months.Task Leader [JSI (EIMV)].
 - Subtask 5.2– Implementing ICS action plan. Timescale 24 Months. Task Leader [JSI (EIMV)].
 - Subtask 5.3– Synthesis work and dissemination. Timescale 24 Months. Task Leader [JSI (EIMV)].

Key challenges & objectives for Year 1

- Task I:
 - S/T coordination startup.
 - Focus on gap analysis as well as literature research, aiming to collect and summarise SOTA research activities
 - Deliverable: State-of-the-art report M6
- Task 2
 - Definition of the different necessary quantities to perform the code-tocode.
 - A selection of a number of representative assemblies will be made.
 - Currently used NDA techniques for SNF to be described.
 - Preparation of irradiated sub-samples of cladded UO₂ and MOX pellets to be measured.

Key challenges & objectives for Year 1

- Task 3:
 - Preparation of irradiated and unirradiated samples of spent nuclear fuel rod segments and cladding.
 - Start of experiments to identify the behaviour of irradiated fuels and simulated spent nuclear fuel pellets.
- Task 4:
 - Identification and first analysis of credible accident scenarios related to transport/storage of SNF.
 - Activities devoted to link this task to the Task 2 and 3 are also foreseen.
 - Deliverable: state-of-emergency radioactive waste M3
- Task 5:
 - Scoping of the objectives and actions in SFC tasks 2-4 in order to identify issues that are deemed of more specific interest in the perspective of developing interactions between civil society and EURAD partners along the course of the WP.
 - Deliverable: ICS action plan MII