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of all proposed schemes for underground
disposal of radioactive wastes. The concept
invokes a series of barriers, both engineered and
natural, between the waste and the surface.
Achieving this concept is the primary objective of
all disposal programmes, from site appraisal and
characterisation to repository design and
construction. However, the performance of the
repository as a whole (waste, buffer, engineering
disturbed zone, host rock), and in particular its
gas transport properties, are still poorly
understood. Issues still to be adequately
examined that relate to understanding basic
processes include: dilational versus visco-
capillary flow mechanisms; long-term integrity of
seals, in particular gas flow along contacts; role
of the EDZ as a conduit for preferential flow;
laboratory to field up-scaling. Understanding gas
generation and migration is thus vital in the
guantitative assessment of repositories and is
the focus of the research in this integrated,
multi-disciplinary project. The FORGE project is a
pan-European project with links to international
radioactive waste management organisations,
regulators and academia, specifically designed to
tackle the key research issues associated with
the generation and movement of repository
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clays, indurated mudrocks and crystalline
formations. Further experimental data are
required to reduce uncertainty relating to the
guantitative treatment of gas in performance
assessment. FORGE will address these issues
through a series of laboratory and field-scale
experiments, including the development of new
methods for up-scaling allowing the optimisation
of concepts through detailed scenario analysis.
The FORGE partners are committed to training
and CPD through a broad portfolio of training
opportunities and initiatives which form a
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1. Introduction

In the framework of the Forge project, numericahgiations of laboratory and in-situ tests
highlighting the gas migration processes in theosdpry will be performed by different
teams (Université de Liége - ULg, Electricité dartee — EDF and Universitat Politécnica de
Catalunya — UPC). This report describes the ingiate of the numerical codes and the main
conceptual models used by each team at the begiohite project.

The different finite element codes are Lagamined)JlAster (EDF) and Code_Bright (UPC).
All these codes deal with thermo-hydro-mechanicablems with partial saturation in porous
media, including the gas transfers. However, tiegntlal problem will not be considered in
the analysis to be performed within WP4 and WP5.

The types of analyses can be 1D (uniaxial confsteain or axisymetrical), 2D (plane strain,
plane stress and axisymetrical) and fully 3D. Tpes of boundary conditions are:
- forces and displacement rate in any spatial dwadr the mechanical problems;
- mass flow rate of water and air prescribed andidigas pressure prescribed for the
hydraulic problems;
- heat flow rate prescribed and temperature prestifitaethe thermal problems.

Hereafter are presented the general framework fwaturated porous media. The main
conceptual models used by each team for the modeaifithe gas migration are emphasized.

2. General framework for unsaturated porous media

The balance equations for unsaturated porous naediéirstly recalled. Then the constitutive

equations of the mechanical and the fluid transfeblems are described, with special
emphasis on the different coupling existing betwgenmechanical and the hydraulic parts.
The different models used by each team for the tingeof the gas migration in host rocks

are presented. The equilibrium restrictions aralfyndescribed.

The general framework for the modelling of unsaeagorous media is detailed for a binary
fluid mixture composed by water and air. The bataeguations and the constitutive relations
can be easily extended for other binary fluid migtu of water and other gas species
(hydrogen, nitrogen, helium, argon...). In these sadee presence of air in the porous media
is neglected and some gas parameters have to bhéedddee section 2.5).

2.1. Balance equations of a porous medium

In the numerical study, the geomaterials of thelaggoal layer are porous media generally
considered as the superposition of several con{i@oassy, 1995): the solid skeleton (grains
assembly) and the fluid phases (water, air, oiBased on averaging theories (Hassanizadeh
and Gray, 1979a, 1979b), Lewis and Schrefler (2@b6posed the governing equations for
the full dynamic behaviour of a partially saturafgmous medium composed of three species
(mineral, water and air) distributed in three plsaglid, liquid and gaseous phases). It is



assumed that the mineral species and the soliceptuascide. However, the liquid phase may
contain dissolved air and the gas phase is a neixtidry air and water vapour.

Hereafter the balance equations are restrictedgfasi-static problem with isothermal
conditions. The unknowns of the mechanical andflbw problems are respectively the
displacementsu;, the water pressurgy, and the gas pressumg. In the following
developments, the balance equations are writteha@ncurrent solid configuration (updated
Lagrangian formulation).

2.1.1. Balance of momentum

In the mixture balance of momentum equation, therattion forces between fluid phases
and grain skeleton cancels. This equation reads:

div(g)+(p.0-9)+S o+ (1= S.) o) &0 (1)

wherep is the porosityps is the solid grain densityp, is the water densityp, is the gas

density, S, is the water relative saturatiog, is the total (Cauchy) stress tensor arid the
gravity acceleration.

2.1.2. Solid mass balance equations

The balance equations are expressed in the mowvimgent configuration through a
Lagrangian actualised formulation. According to sneassumptions, the mass balance
equation of the solid skeleton is necessary met.agiven mixture volumé/, the mass
balance equation reads:

at

wheret is the time and? is the volume of the porous medium.

2.1.3. Fluid mass balance equations

Following the ideas of Panday (1957) and Olivella94), the fluid mass balance equations
are written for each chemical species (i.e. water @r). In this way the terms related to the
phase transfer cancel. The mass conservation egadtr the water and gas species have the
same form whatever the gas component (air, hydrogérogen...). Hereafter the mass
conservation equations for the water and gas spemie respectively presented, in the
particular case of a gaseous mixture of water vapod dry air:

div(0.q)+ 2 (0S.)- @+ dif i+p.g)+ 2 (o= $.))- Q=0 @

Liquid water Water vapour




div(0,g, +1.)+2-(P#(1-5.)) - Q+ dN(00 a4+ b ) +2 (0, #5)- Q=0 (@

Dry air in gaseous phase Dissolved air in water

wherepais the density of airg, and g, are the advective flux of liquid and gaseous phase

respectivelyi, (=-i,) andi,.¢ are the non-advective flux of water vapour and aryQ.,, Q,
Q. andQ,.q are the sink terms of the different species.

2.2. Constitutive equations

The constitutive equations are key components efdihmulation. They describe the specific
behaviour of the porous medium. Moreover the caigpihenomena are often reflected in the
constitutive equations.

2.2.1. Stress-strain behaviour

In order to reproduce the stress-strain behavidyradially saturated porous media, as the
shear strength or the collapse phenomena, two ategastress variables are needed. Two
main approaches exist. The first one uses the Bisheffective stress and the suctien

(: Py~ pw). The Bishop’s effective stress is expressed byi{NuLaloui, 2008):

o'=0-b(s, n+(1-$) p) ®)
where g’ is the Bishop’s effective stresg, is the total stress aris the Biot coefficient.

Other approaches use two separate stress variaypesally net stresses” and suctiors
(: [ pw). Net stress is defined as the excess of totadstreer gas pressure:

o'=0-p, (6)
The general form of the unsaturated constitutivel@scan be expressed as:

dg’""'= Dde + hd (7)

with i’m the Bishop’s effective stress or the net stresshe strain tensorD and h the

constitutive matrix, respectively for the strainthe suction tensors.

Owing the high preconsolidation pressure of atgillthe plastic behaviour of argillaceous
rocks is mainly controlled by the shear strengtid aot by the collapse phenomena. Using
only the Bishop's effective stress allows thus téygroduction of the behaviour, which is the
option frequently used in the modelling of hostk®behaviour.



Different constitutive models are implemented ie fimite element codes:

- elastic model,

- elastoplastic model perfectly plastic, with diffeteield surface (Mohr-Coulomb, van
Eekelen, Drucker-Prager) and potential dilataneygdéning/softening;

- Cam-Clay model;

- Hoek & Brown model,

- Barcelona Basic Mode (Alonso et al.,1990), whicloves the description of the
volumetric collapse (compression) behaviour upotting

- damage model;

- damage — elastoplastic model (Code Bright), whimhsaers the argillaceous rock as
a composite material made of a clay matrix intésmt by bond. Clay matrix
behaviour is modelled through an elastoplastic titive law, typical of soils. Bonds
are modelled through a damage elastic law (Caral.gR001), typical of quasi-brittle
materials. A coupling parameter gives the relatingportance of clay and bond
response for the composite material. This law agplo material having a response
transitional between that of a soil and a rock. Tiethematical formulation of the
damage — elastoplastic model is detailed in theagb;

- viscoplastic model using a Drucker Prager criterffBDF), the formulation of this
model is detailed in the appendix.

2.2.2. Solid density variation

For the considered materials and stress levelsndroadioactive waste disposals, the solid
grain deformability is no more negligible and thengral Biot framework (Biot, 1941) is used
to model the hydromechanical coupled terms. Folgwihe ideas of Biot, Coussy (2004)
proposed a thermodynamical framework of the problhich leads to the expression of the
porosity variation:

(8)

whereb is the Biot coefficientQ/Q = &, the skeleton volumetric deformation rate dads

the grain compressibility. The porosity variatisnuised in the fluid balance equations (eq. (3)
and (4)) in the computation of the storage termntitoduces a coupling term between the
mechanical behaviour and the fluid transfers.

2.2.3. Fluid transport constitutive equations

A biphasic flow model is considered for the dedoip of the fluid transport processes. The
liquid phase may contain dissolved air and the @asse is a mixture of dry air and water
vapour. The fluid fluxes are described by the atlwacmf each phase and by the diffusion of
the species in each phase. The following relatimssare written for the particular case of a
binary fluid mixture composed by water and air, bah be easily extended for other binary
fluid mixtures of water and other gas species (bgdn, nitrogen, helium, argon...). More
details are available on section 2.5.



2.2.3.1. Advective flux of the liquid phase

The advective flux of the liquid phase is goverbgdhe Darcy’s law:

K. K
q =-=2—*(grad(p)+p,9 92 J) ©)
whereﬁW is the water intrinsic permeability tensdg,, is the water relative permeabiliiy,

is the water dynamic viscosity, the gravity acceleration andthe vertical upward directed
coordinate.

2.2.3.2. Advective flux of the gaseous phase

The advective flux of the gaseous phase is goveogete Darcy’s law:

K
9, :‘%Kg(@( )+ e, ggrad §) (10

whereﬁg is the gas intrinsic permeability tenséy, is the gas relative permeabiligy, is the

dynamic viscosity of the gaseous mixtugeghe gravity acceleration arydhe vertical upward
directed coordinate.

The dynamic viscosity of the gaseous mixture depemd the dynamic viscosity of each
component of the mixture:

1
= - 11
’ng pa + IOV ( )

Polsy Py

with p, and p, the density respectively of the dry air and theéewaapour, andw, and £,
the dynamic viscosity respectively of the dry aiddahe water vapour.

Other relationships exist for the dynamic viscosifya gaseous mixture. For instance, in the
Lagamine code, the dynamic viscosity of the dry-awater vapour mixture is expressed by
(Wilke, 1949):

— /'Ia 5 + ILIV 5 (12)
LX) u ML) (X X)) (ke
2\/§V1+(Ma/Mv) 2\/_ :H-(MV/Ma)

with X, = % the air molar fraction an&, = % the vapour molar fraction.
g g

Hq




2.2.3.3. Non-advective flux of water vapour and dry  air

The non-advective flux of water vapour, i.e. diffiesflux, is related to the water vapour bulk
density gradient (Fick’s law):

i, =-¢(1-S,,)7D, .0, grad(%] =-i, (13)

g

where D,,, is the diffusion coefficient in the gaseous migtulry air — water vapour ard is
the tortuosity of the porous medium.

The diffusion coefficient depends on temperature gas pressure. Two relations are

commonly used: the first one for gaseous mixturdrgfair and water vapour (Philip and de
Vries, 1957), the second one for gaseous mixtuenother gas specieand water vapour:

2,3
D, =5,893.10° 1 (14)

Py

p T 1,75
D, =D, 22| — 15
v/i O( pg j(-l-oj ( )

whereDy is the diffusion coefficient for a given gas mirsdu

2.2.3.4. Non-advective flux of dissolved air

The non-advective flux of dissolved air in the lidighase, i.e. diffusive flux, is related to the
dissolved air bulk density gradient (Fick’s law):

i_a—d = _(ﬁr WT Da— d/ Wowgrad(hj (16)
' - AP

w

where p,_, is the density of the dissolved air dnd,,, is the diffusion coefficient of
dissolved air in water, which depends on tempeeatur

2.2.4. Liquid density variation

The compressible fluid is assumed to respect thewaolig relationship (Lewis and Schrefler,
2000). This predicts an increase of water density amction of the water pressure, defining
xw as the liquid water bulk modulus:

pu=Lup, (17)
Xw



2.2.5. Gas density variation

For a gaseous mixture of dry air and water vapihwerjdeal gas law is introduced, because the
moist air is assumed to be a perfect mixture of tdenl gases. The equation of state of
perfect gas (Clapeyron’s equation) and Dalton’s Epplied to dry air, water vapour and
moist air yields (Pollock, 1986; Gawin et al., 1996

,oRT RT
and 18
P, =5 p, =5 (18)

a A

Py =P, + R andp; =p, +p, (19)

with M, andM, the molar mass respectively of the dry air andithter vapour.

2.2.6. Water absorption / desorption

The relation between the amount of water presesbiinpore space (quantified by the degree
of saturation of liquids,, or the water content) and the soil suctior is usually referred to
as the water retention curve. Different analyteogbressions of the water retention curve have
been proposed, based on various meaningful soilacteistics to provide a continuous
relation between soil suction and the degree afraabn.

2.2.6.1. Reversible retention curve

The van Genuchten relationship reads:

S S _| g[S )
=14 > 20
7SS, ( j .

where S . is effective saturation of porous medf,, is the residual degree of saturation,

S.ax 1S the maximum degree of saturatisns the suctionP; is the pressure of air entrance,
mis the shape function coefficient.

Other classical retention curves are proposed wliddze defined by user in the different finite
element codes, as the Vauclin relationship:

Sr W - SeS a
= = 21
S' we Sm _ ses a+ ( b S)/\ ( )

with a, b andZ the material parameters.



2.2.6.2. Retention curve with hysteresis behaviour - Lagamine

Experimental data show that the process of degsainraccurs only at suction values greater
than the air entry-suction. Below this limit, theilsremains saturated while suction is
positive. Experimental data show also a hystefeticaviour of the retention behaviour. At
the same suction, the degree of saturation is l@mes wetting path (water absorption) than
on a drying path (water desorption). A water ratanconstitutive model, considering the
effects of hysteresis and air entry-suction angpsed by Francois (2008), is introduced in
the Lagamine code. Hysteresis in water retentidrabieur is modelled as a plastic process,
assuming an analogy between the air-entry susti¢yield limit in the & —s plane) and the

preconsolidation pressurg, (yield limit in the isotropic mechanical plane).ndkr re-

wetting, a hysteretic phenomenon occurs, also septed by a yielding process. Two plastics
mechanisms are considered, respectively for drgimywetting paths:

foy =5—§ =0 (22)
fwet = Sd Sﬂys_ S= O (23)

wheresy is the drying yield limit ands,ys a material parameter considering the size of the
water retention hysteris. If the initial state &wated, the initial drying limiyo is equal to
air-entry suctiors, and increases when suction overtakess follows:

S = 50eXp(-BAS.) (24)

where £, is the slope of the desaturation curve in (tEi@ =In Qplane.

2.2.7. Permeability variation

The permeability tensoﬂ;pkrp (p=W,g) can depend on the degree of saturation for

unsaturated cases or on the mechanical behaviaupgjpy or tensile strain). Different
constitutive models exist to reproduce the permigalbénsor evolution.

2.2.7.1. Water permeability variation with degree o f saturation

The advective fluxes of the liquid and gaseous ehase governed by the Darcy’s law for
unsaturated cases. In this relation, it is assuim&icthe effective permeability tensor depends
on the degree of saturation. A water relative patmigy function k., is introduced,
reproducing the decrease of the water permealiiy the drying of the material. Different
models exist and are introduced in the finite elehtedes.
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The van Genuchten function reads:

K =+/Sw {1—{1— $lnwj J (25)

with m a material parameter coming from the van Genu&ht@rater retention curve
(equation 20).

Water relative permeability can be also expressed power of degree of saturation. Cubic
law is generally used:

K =(Su) (26)

Other functions could be defined easily by user.

2.2.7.2. Gas permeability variation with degree of  saturation

As for the water relative permeability, a gas ietatpermeability can be introduced in the
Darcy’s law for unsaturated cases in order to réypece the increase of the permeability tensor
with the degree of saturation. An extension oftiie Genuchten — Mualem can be used:

1 2m
o =501 5,7 @)
with ma parameter coming from the van Genuchten’s watention curve .

Gas relative permeability can be also expressedpasver of degree of saturation. Cubic law
is generally used:

ke =(1-S..)° (28)

Other functions could be defined easily by user.

2.2.7.3. Permeability variation with porosity

The influence of the mechanical behaviour of theéema on the permeability tensor can be
modelled by different ways. The permeability tengér can depend on porosity through

Kozeny-Karman’s law:
3 1_ 2
SN[
= ~la)l1-g

whereK is the initial permeabilityp is the porosityg, is the initial porosity.

11



Other relationships take into account the coupbetveen permeability and porosity, as the
one used in GDR Momas and developed in the Lagaocude or in Code_Aster:

K=K, (1+a(o-a)) (30)

wherea and S are material parameters.

2.2.7.4. Embedded fracture model — Code Bright & La gamine

A specific permeability model (Olivella and Alons2008; Arnedo et al., 2008; Alonso et al.,
2006; Levasseur et al., 2010) can be consideredhrargillaceous rocks in WP4. The
embedded fracture model is available in Code_Bragitt Lagamine. The basic idea consists
in the appropriate representation of single disooity representing the rock bedding, which
is embedded in a continuous finite element. Figusbows, in the left part, a single fracture in
a porous medium characterized by its apertuaed, on the right, a finite element composed
by a rock matrix (in general, a porous medium) anseries oh fractures. The number of
fractures in an element depends on the width aasacwith each fracture, which will be
considered a characteristic size of the materiad, the element size (perpendicular to the
direction of discontinuities).

Liquid and gas flow through a single planar fraetis calculated using Darcy’'s law. The
intrinsic permeability can be calculated, assuniamginar flow, as:

b2

fracture — 7
12

K (31)

whereb is the aperture of the single fracture.

When a set oh fractures is included in a finite element (Figihe the equivalent intrinsic
permeabilityK; of the element in the direction parallel to thectures can be calculated as:

B s—-nb) & ba)_ s nh b1l b
Kij - Kmatrix (Tj + Z( K fracture_a_sj =K matrix(—si + Z( K fracture_a_J UK matrix T EE (32)

i=1 i=1

whereKmatrix IS the reference intrinsic permeability of the ranktrix or porous material, i.e.
the material without fractures,is the element size (width normal to flow direabioa is the
width associated with each fracture, and s/ a is the number of fractures in the element.
Permeability of the matrix will be relevant onlyrfeery low apertures; otherwise fracture
permeability will dominate the total permeabilitydamatrix permeability will be negligible in
comparative terms.

The aperture of the fracture can be estimated fasicion of deformation in the following
way:

b=k +Ab for Ab=0

Ab=ale=at-¢))=(9 nEe—-¢,) for e>¢, (33)

12



n=s/a
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P <>&
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A
v

S

Figure 1 A single fracture characterized by its apertu(eft) and a finite element with a
series of parallel fractures (right). The widthtloé element is, the aperture of the fractures is
b, the associated width to each fractura,iand the number of fractures in the element is

It has been assumed that deformation is localizedl r@sults in changes in aperture. A
threshold values() is considered. Therefore the changes in apedia® when deformation
reaches this value. Deformation perpendicular ¢oftiicture plane is to be used when aperture
changes have to be obtained. The threshold valyas(associated with fracture initiation.
This parameter will be set to zero if the fractuagady exist and have an initial apertbge
The initial aperture can be also zero when thetdras exist but are closed.

The variation of capillary pressure induced by tiuee aperture changes is also included in the
Code_Bright (but not in Lagamine code). Accordingkielvin’s law the capillary pressure
necessary to desaturate a fracture is given by:

_ F.l}_m
R=0|—+—=|=—
nor, b (34)

with o the surface tension. It is obtained whemj1# 0 andr, = b/2 (the wetting angle has
been assumed to be 0). This equation can be usadlgito calculate the air entry value of the
element. If equation (30) is combined with equati@8) the capillary pressure to start
desaturation is obtained as:

Pp=pY 2 (35)

wherePyis the capillary pressure for a reference permialiil, which eventually can be the
initial permeability. As a first approximation theapillary pressure associated with the

13



discontinuity can be introduced in the standardewattention curve of van Genuchten (van
Genuchten, 1980).

2.3. Equilibrium restrictions

2.3.1. Kelvin's law

It is assumed that the water vapour in porous mdaways in equilibrium with the liquid
water. The corresponding equilibrium restrictioruaipn is given by Kelvin’s law for the
vapour concentration in the gaseous phase:

p -sM
RH=h :—V:exp( Vj (36)
0 Rpr

where RH =h is the relative humidityp, is the partial vapour pressumgy is the water
vapour saturation pressure at the same temperatisréhe suctionM, is the molecular mass
of water vapour (0.018 kg/molR is the universal gas constant (8.314 J/(mol Ky) &ts the
absolute temperature in Kelvin.

The water vapour saturation presspyg is the vapour pressure in equilibrium with liquid
water pressure if the capillary effects are notstbered. The saturated vapour concentration
can be obtained by two empirical relationships. Tilet one is based on experimental date
from Ewen et al. (1989) and is used in the Lagaroode or in Code_Aster:

i=194,4exp§— 0,0637&r - 243 0,1634:1(T - ﬁ) (37)

IOVO
for temperature range between 293 K and 331 K.

Other relation gives an adequate estimation, basathta from Garrels & Christ (1965):
P.o(MPa) = 112659.ex€ﬁdj (38)

for temperature range between 273 K and 373 K.

2.3.2. Henry's law

The amount of dissolved air in the liquid phasalgays in equilibrium and proportional with
the quantity of dry air. The amount of dissolvedisigiven by Henry's law (Weast, 1971).

pa—d = Ha(T)IOa (39)

whereH, is Henry’s coefficient for dissolved air, deperglion temperature.
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2.4. Water parameters for fluid transport relations

The constitutive equations proposed for a binarytuné of water and air depends on some
parameters of water (liquid water or water vapodefined in the

Table1.
Liquid water Water vapour
Dynamic viscosity M 103 10° Pa.s
. Psychrometric 3
Density P 1000 restriction kg/m
Bulk modulus X 210 Ideal gas relation Pa

Table 1 : Main water parameters for fluid transport relations for T=20°C andp,~py=0.1 MPa

2.5. Gas parameters for fluid transport relations

The general framework for the modelling of unsaeatgporous media previously described
assumes a binary fluid mixture: water and air. Dlaégance equations and the constitutive
relations can be extended when other binary fluigtures are considered, especially for
water and other gas species (hydrogen, nitrogelwnmeargon...). In these cases, the
presence of air in the porous media is neglectegnEough the constitutive equations are
similar, parameters of the models depend on thegases, as presented in the Table 2.

Air Hydrogen Nitrogen Helium Argon
Dynamic viscosity y7A 18,6 10° 910° 17,9 1¢° 20 10° 22910 | Pas
Diffusion coefficient Equation
in gaseous phase Do q(14) 9,510 2,42 10° 78110 | 3,0410 | m¥s

with water vapour
Diffusion coefficient

of dissolved gasin| D,_,,,, | 5,03 10 4,6 10° 210° 7,28 10° 2510° | m¥s

liquid phase
Density L. 1,205 0,0838 1,1652 0,1663 1,6619 kg/m3

Henry’s coefficient Ha 0,0234 0,0190 0,0149 0,0091 0,0342 -

Table 2 : Main gas parameters for fluid transport relations for T=20°C andp,~=py=0.1 MPa
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3. Conclusions

In the framework of the European Forge project, etlody of laboratory or in-situ gas

migration tests will be performed by Université dege, Electricité de France and
Universitat Politéecnica de Catalunya. The differfamte element codes are Lagamine (ULQ),
Aster (EDF) and Code_Bright (UPC). All these codesl with thermo-hydro-mechanical
problems with partial saturation in porous mediajuding the gas transfers.

In this report, the initial state of the numericables and the main conceptual models existing
at the beginning of the project have been describad general framework for unsaturated
porous media has been presented. The constitujivatiens of the mechanical and the fluid
transfers problems have been described. The méeratices between the finite element
codes have been highlighted. It mainly concernsdiscription of the permeability tensor
evolution with the mechanical behaviour. Finallyreaiew of the values of the main water
and gas fluid parameters has been presented.
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5. Appendix

5.1. Damage — Elastoplastic model — Mathematical fo  rmulation -
UPC

The mathematical formulation of the damage — epdastic model proposed by UPC is
described hereafter. For this model, equations \argten assuming soils mechanics
compressiond > 0, & > 0 for compressionj is the mean effective stregsthe square root of
the second invariant of deviatoric stress tens@rithe Lode’ angle (-30° in triaxial
compression, +30° in triaxial extension).
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Clay matrix behaviour

Elastic law:
doy' = D' (dg" - dg/) (40)

Dj' is defined bya transversal isotropic elastic model based onntbeel presented by

Wittke (1990), which considers 5 material paranegef#us 2 anisotropy directions describing
the bedding orientation.

Yield function: 2 kind of yield criteria are considered

Mohr-Coulomb

FP =(cos«9“" +% sing" sir(pj\]M - sip P+ p (41)

p, =c'cotg' is clay matrix tensile strength; clay matrix cohesiong clay matrix friction
angle.

Hoek & Brown (198Q)

. M—E
45"'2(9 6) vs 2 msing”

R J3

p, =R/ m is clay matrix tensile strengtii®; clay matrix uniaxial compressive strength,a
parameter defining the shape of the parabolic yeatdrion.

FP= JV-m(g"+ p)=0 (42)

Both yield criteria present corners in the deviat@tane. They are smoothed using Sloan &
Booker (1986) procedure. Lode’s andleat which smoothing starts must be defined (see ICL
=74).

Rate dependency Rate dependency is introduced as a visco-plasgchanism. Plastic
multiplier AP is expressed as a function of the distance betweeourrent clay matrix stress
point and the inviscid plastic locus:

dt
dAP =—(FP
/7M<F ) (43)

where dt is the time incrementyy is the clay matrix viscosity an¢) are the Macauley
brackets. Inviscid plastic locus takes the form:

Fr=rr-Tugir<o (44)
dt
whereF® can be either the Mohr Coulomb or Hoek & Browrlgieriterion.
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Plastic potential a non associated plastic potential in the p-gyrdian is defined for each
yield criterion. In the deviatoric plane, plastiotential is considered associated.

Mohr-Coulomb

FP =(cos€M L sip" sir{pj\]M —w sip P+ ¥ (45)

V3

p, ¢’ and ¢ are parameters defining the yield criterieanis a parameter defining the non
associativity of the flow. It takes a value equalltwhen associated and equal to O for null
dilatancy.

Hoek & Brown

. M _LT
45"12(0 jJMZ _ 2 msing"
R J3
p, Re andm are parameters defining the yield criterienis a parameter defining the non

associativity of the flow. It takes a value equalltwhen associated and equal to O for null
dilatancy.

FP= M-wm( g+ p)=0 (46)

Hardening law: in the case in which only matrix behaviour is sidered (bonds constitutive
law is not activated), it is possible to define eghdation law for the plastic hardening
parameter. If bonds are considered, degradatiodues to bond degradation and matrix
behaviour is considered perfectly plastic.

Mohr-Coulomb
—_— 1 max(gp !E )
p, =c',cotarp| + (ra )751 r 47

C'p is the intact cohesiomy a brittleness parametes; is the major principal plastic straig,
the accumulated major principal plastic strain htolv the residual cohesianc’y is reached.
a = 1 means perfect plasticitgr,= 0, total degradation (residual cohesion equ@)to

Hoek & Brown:

r

p, = &{1_(1_ a)%lp’{r)} (48)
m ¢

Reo is the intact strengthy a brittleness parametes; is the major principal plastic straig,
the accumulated major principal plastic strain htolv the residual strengfR is reached.
a = 1 means perfect plasticityr,= 0, total degradation (residual strength equél)to

Bond behaviour
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Elastic law:
doy = D (dg°- dg/) (49)

Difk‘,) is the secant damaged elastic matrix. It is relatetthe secant undamaged elastic tensor
Di’by D =e'Dg°. L is the damage variable, related to the ratio eidomickocraks area
over the whole bond area)ifkkfois defined by the undamaged bond Young’s mod&land
bond Poisson’s ratig, through the classical linear isotropic elasticity.

Damage locusDamage locus is defined as an energy threshold
d 1 b b b
F :Ea.a. -r (50)

Iy is the value of energy threshold.
Rate dependency Rate dependency is introduced as a delayed magking and use the

visco-damage formalism. Damage variable is expdeasea function of the distance between
the current bond stress point and the infinitebyjwstiamage locus:

dt
dL=—/(F¢ 51
L ”b<|=> (51)

wheredt is the time incrementy, is the bond viscosity an¢} are the Macauley brackets.
Infinitly low damage locus takes the form:

Ifd:Fd—%dLsO (52)

Damage rule Damage rule gives the evolution of damage stdafhwith damage variable.
This relation is constrained by bond elastic modublution and must take the form:

dey = g'dL (53)

Damage evolution law:lt gives the evolution of damage loaysvith damage variable. A
simple linear expression is considered:

r°=ry+rL (54)

rois the damage of the intact material and parameter giving the rate of evolution (higher
value ofr; gives lower damage rate).

Coupling behaviour: Coupling comes from the restrictions that lo¢edis £ijM and 55’ must be
compatible with the external strag) and local stresseﬁ and ai?must be in equilibrium
with external stresses; . These restrictions read:
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dey, =deg; +dg, (55)

g; =L+ x)oy, + X0y, wih X = x,& ™ (56)

L is the damage variable aggla coupling parameter that gives the relative ingrare of
bond and clay matrix behaviour in the overall res@oof the composite material.

5.2. Drucker-Prager Viscoplastic model — Mathematic  al
formulation - EDF

This section will describe the mathematical forniola of the viscoplastic model based on
Drucker Prager criterion developped in Code Asiére proposed model is based on only
one viscoplastic mechanism. The viscoplastic ¢ateihardening is due to the cumulated
deviatoric plastic deformation, passing througheéhisteps called thresholds: the initial
threshold for a null viscoplastic deformation, theak threshold for a peak deformation
(parameter of the model) and a final threshold dadeformation beyond the ultim one (a
parameter of the model). The stress state can befdbe threshold but it turns back with a
speed proportional to the distance between thessstate and the threshold according to
Perzyna law. The flow is not associated, the flateptial is a Drucker-Prager one which
hardens according to three levels (initial, peak] altim). Between the thresholds, hardening
is linear.

In the following,p is the accumulated viscoplastic stra8), the second invariant of

deviatoric stress tensor, the first invariant of stres$), the elastic tensor.

In this model, the yield surface is defined by :

f =\/gsn +O’(p)|1—R(p)

with,a(p), R(p) function of p.
The viscoplastic potential G is defined by

G :\/gsll +ﬂ(p)|l

To describe evolution of and G, three levels are defined correspondingreetthresholds ;

the initial one matches the elastic part withowceplastic deformation, the peak threshold
the peak threshold which caracterizes the maxintass state and a final threshold
corresponding to the residual state. Between titialiand the peak thresholds the behaviour
is hardening. Between the peak and the residuaghiotds the behaviour is softening.

We note thereafter :

a,,R,, B,hardening parameters linked to elastic threslplet 0)
a o Rys B hardening parameters linked to peak thres}ﬁpld ppk)

a,.,R,. B, hardening parameters linked to final threshigic= p,, )
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Then, Cohesion functions are defined as following:

apk - aO

a(p)=( ]p'l'ao pour0< p < py

pk

a, -a
u](p_ ppk)+apk pour P, < P < Py

ult ppk

a(p){

a(p) =a,, pour p > p,

the dilatancy functions are:

:Bpk - ,Bo

:Bult - ﬁpk

ult pk

ﬂ(p)=[ jp+ﬂo pourO0< p<p,

B(p) :( J(p_ ppk)+,3pk pour p,, < P < Py

18( p) = ﬂult pour p > pult

and the hardening functions:

R —
R(p) ={DK—ROJD+RO pour0< p < py
pk
R:—R
R(p) = (”fppk (p= Pa)+ Ry POUF P, < P< Py,
ult pk

R(p) = R,; pour p > p,,

Stress and strains are linked with a classical @sdlaw:
o= De(s - sz)
The viscoplastic deformation is controled by theziea law:

de® = f a—Gdt
Pres aaij

with p, the reference pressure (atmospheric pressure) ameefding parameter.
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