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Fate of repository gases (FORGE) 

The multiple barrier concept is the cornerstone 
of all proposed schemes for underground 
disposal of radioactive wastes. The concept 
invokes a series of barriers, both engineered and 
natural, between the waste and the surface. 
Achieving this concept is the primary objective of 
all disposal programmes, from site appraisal and 
characterisation to repository design and 
construction. However, the performance of the 
repository as a whole (waste, buffer, engineering 
disturbed zone, host rock), and in particular its 
gas transport properties, are still poorly 
understood. Issues still to be adequately 
examined that relate to understanding basic 
processes include: dilational versus visco-
capillary flow mechanisms; long-term integrity of 
seals, in particular gas flow along contacts; role 
of the EDZ as a conduit for preferential flow; 
laboratory to field up-scaling. Understanding gas 
generation and migration is thus vital in the 
quantitative assessment of repositories and is 
the focus of the research in this integrated, 
multi-disciplinary project. The FORGE project is a 
pan-European project with links to international 
radioactive waste management organisations, 
regulators and academia, specifically designed to 
tackle the key research issues associated with 
the generation and movement of repository 
gasses. Of particular importance are the long-
term performance of bentonite buffers, plastic 
clays, indurated mudrocks and crystalline 
formations. Further experimental data are 
required to reduce uncertainty relating to the 
quantitative treatment of gas in performance 
assessment. FORGE will address these issues 
through a series of laboratory and field-scale 
experiments, including the development of new 
methods for up-scaling allowing the optimisation 
of concepts through detailed scenario analysis. 
The FORGE partners are committed to training 
and CPD through a broad portfolio of training 
opportunities and initiatives which form a 
significant part of the project.  

Further details on the FORGE project and its 
outcomes can be accessed at 
www.FORGEproject.org.

Contact details: 

 

Pierre Gerard, Robert Charlier, Frédéric Collin 

University of Liege  

 

Roméo Fernandes, Sylvie Granet  

EDF 

 

Diego Arnedo, Sebastià Olivella 

Universitat Politècnica de Barcelona

http://www.forgeproject.org/�


 

 
 
 
 
 
 
 

Description of initial numerical codes and conceptual 
model (undisturbed and disturbed host rocks) 

 
 

Forge Project – Deliverables 4.5 and 5.5 
 
 
 
 
 
 

 
 
 

 
 
Pierre Gerard, Robert Charlier, Frédéric Collin 
 Université de Liège 
 
Roméo Fernandes, Sylvie Granet 
 EDF 
 
Diego Arnedo, Sebastià Olivella 
 Universitat Politècnica de Barcelona 
 
 
 
 
 

February 2010 
 



 2 

Content 
 
 

1. INTRODUCTION ....................................................................................................................................... 3 

2. GENERAL FRAMEWORK FOR UNSATURATED POROUS MEDIA..... ......................................... 3 

2.1. BALANCE EQUATIONS OF A POROUS MEDIUM........................................................................................ 3 
2.1.1. Balance of momentum ..................................................................................................................... 4 
2.1.2. Solid mass balance equations.......................................................................................................... 4 
2.1.3. Fluid mass balance equations ......................................................................................................... 4 

2.2. CONSTITUTIVE EQUATIONS................................................................................................................... 5 
2.2.1. Stress-strain behaviour ................................................................................................................... 5 
2.2.2. Solid density variation..................................................................................................................... 6 
2.2.3. Fluid transport constitutive equations............................................................................................. 6 
2.2.3.1. Advective flux of the liquid phase ............................................................................................... 7 
2.2.3.2. Advective flux of the gaseous phase............................................................................................ 7 
2.2.3.3. Non-advective flux of water vapour and dry air......................................................................... 8 
2.2.3.4. Non-advective flux of dissolved air............................................................................................. 8 
2.2.4. Liquid density variation .................................................................................................................. 8 
2.2.5. Gas density variation ...................................................................................................................... 9 
2.2.6. Water absorption / desorption......................................................................................................... 9 
2.2.6.1. Reversible retention curve .......................................................................................................... 9 
2.2.6.2. Retention curve with hysteresis behaviour - Lagamine ............................................................ 10 
2.2.7. Permeability variation................................................................................................................... 10 
2.2.7.1. Water permeability variation with degree of saturation........................................................... 10 
2.2.7.2. Gas permeability variation with degree of saturation.............................................................. 11 
2.2.7.3. Permeability variation with porosity ........................................................................................ 11 
2.2.7.4. Embedded fracture model – Code Bright & Lagamine ............................................................ 12 

2.3. EQUILIBRIUM RESTRICTIONS............................................................................................................... 14 
2.3.1. Kelvin’s law................................................................................................................................... 14 
2.3.2. Henry’s law ................................................................................................................................... 14 

2.4. WATER PARAMETERS FOR FLUID TRANSPORT RELATIONS................................................................... 15 
2.5. GAS PARAMETERS FOR FLUID TRANSPORT RELATIONS........................................................................ 15 

3. CONCLUSIONS........................................................................................................................................ 16 

4. REFERENCES .......................................................................................................................................... 16 

5. APPENDIX ................................................................................................................................................ 17 

5.1. DAMAGE – ELASTOPLASTIC MODEL – MATHEMATICAL FORMULATION - UPC ................................... 17 
5.2. DRÜCKER-PRAGER V ISCOPLASTIC MODEL – MATHEMATICAL FORMULATION - EDF ......................... 21 

 
 



 3 

1. Introduction 
 
In the framework of the Forge project, numerical simulations of laboratory and in-situ tests 
highlighting the gas migration processes in the repository will be performed by different 
teams (Université de Liège - ULg, Electricité de France – EDF and Universitat Politècnica de 
Catalunya – UPC). This report describes the initial state of the numerical codes and the main 
conceptual models used by each team at the beginning of the project. 
 
The different finite element codes are Lagamine (ULg), Aster (EDF) and Code_Bright (UPC). 
All these codes deal with thermo-hydro-mechanical problems with partial saturation in porous 
media, including the gas transfers. However, the thermal problem will not be considered in 
the analysis to be performed within WP4 and WP5.  
 
The types of analyses can be 1D (uniaxial confined strain or axisymetrical), 2D (plane strain, 
plane stress and axisymetrical) and fully 3D. The types of boundary conditions are: 

- forces and displacement rate in any spatial direction for the mechanical problems; 
- mass flow rate of water and air prescribed and liquid/gas pressure prescribed for the 

hydraulic problems; 
- heat flow rate prescribed and temperature prescribed for the thermal problems. 

 
Hereafter are presented the general framework for unsaturated porous media. The main 
conceptual models used by each team for the modelling of the gas migration are emphasized. 
 

2. General framework for unsaturated porous media 
 
The balance equations for unsaturated porous media are firstly recalled. Then the constitutive 
equations of the mechanical and the fluid transfers problems are described, with special 
emphasis on the different coupling existing between the mechanical and the hydraulic parts. 
The different models used by each team for the modelling of the gas migration in host rocks 
are presented. The equilibrium restrictions are finally described. 
 
The general framework for the modelling of unsaturated porous media is detailed for a binary 
fluid mixture composed by water and air. The balance equations and the constitutive relations 
can be easily extended for other binary fluid mixtures of water and other gas species 
(hydrogen, nitrogen, helium, argon…). In these cases, the presence of air in the porous media 
is neglected and some gas parameters have to be modified (see section 2.5). 
 

2.1. Balance equations of a porous medium 
 
In the numerical study, the geomaterials of the geological layer are porous media generally 
considered as the superposition of several continua (Coussy, 1995): the solid skeleton (grains 
assembly) and the fluid phases (water, air, oil...). Based on averaging theories (Hassanizadeh 
and Gray, 1979a, 1979b), Lewis and Schrefler (2000) proposed the governing equations for 
the full dynamic behaviour of a partially saturated porous medium composed of three species 
(mineral, water and air) distributed in three phases (solid, liquid and gaseous phases). It is 
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assumed that the mineral species and the solid phase coincide. However, the liquid phase may 
contain dissolved air and the gas phase is a mixture of dry air and water vapour. 
 
Hereafter the balance equations are restricted for quasi-static problem with isothermal 
conditions. The unknowns of the mechanical and the flow problems are respectively the 
displacements ui, the water pressure pw and the gas pressure pg. In the following 
developments, the balance equations are written in the current solid configuration (updated 
Lagrangian formulation).  
 

2.1.1. Balance of momentum 
 
In the mixture balance of momentum equation, the interaction forces between fluid phases 
and grain skeleton cancels. This equation reads: 
 

 ( ) ( )( ), ,(1 ) 1 0σ ρ φ ρ φ ρ φ+ − + + − =s r w w r w gdiv S S g  (1) 

 
whereφ  is the porosity, ρs is the solid grain density, ρw  is the water density, ρg  is the gas 

density, ,r wS  is the water relative saturation, σ  is the total (Cauchy) stress tensor and g is the 

gravity acceleration. 
 

2.1.2. Solid mass balance equations 
 
The balance equations are expressed in the moving current configuration through a 
Lagrangian actualised formulation. According to these assumptions, the mass balance 
equation of the solid skeleton is necessary met. For a given mixture volume V, the mass 
balance equation reads: 
 

 
( )1

0
ρ φ∂ − Ω

=
∂

s

t
 (2) 

 
where t is the time and Ω  is the volume of the porous medium. 
 

2.1.3. Fluid mass balance equations 
 
Following the ideas of Panday (1957) and Olivella (1994), the fluid mass balance equations 
are written for each chemical species (i.e. water and air). In this way the terms related to the 
phase transfer cancel. The mass conservation equations for the water and gas species have the 
same form whatever the gas component (air, hydrogen, nitrogen…). Hereafter the mass 
conservation equations for the water and gas species are respectively presented, in the 
particular case of a gaseous mixture of water vapour and dry air: 

 

 ( ) ( ) ( ) ( )( ), ,

Liquid water Water vapour

1 0
∂ ∂ρ ρ φ ρ ρ φ
∂ ∂

+ − + + + − − =
������������� �����������������

w w r w w v v v r w vl g
div q S Q div i q S Q

t t
 (3) 
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 ( ) ( )( ) ( ) ( ), ,

Dry air in gaseous phase Dissolved air in water

+ 1 + 0
∂ ∂ρ ρ φ ρ ρ φ
∂ ∂− − − −+ − − + + − =

����������������� �������������������
a a a r w a a d a d a d r w a dg l

div q i S Q div q i S Q
t t

 (4) 

 
where ρa is the density of air; lq  and gq  are the advective flux of liquid and gaseous phases, 

respectively; iv (=-ia) and ia-d are the non-advective flux of water vapour and dry air; Qw, Qv, 
Qa and Qa-d are the sink terms of the different species. 
 

2.2. Constitutive equations 
 
The constitutive equations are key components of the formulation. They describe the specific 
behaviour of the porous medium. Moreover the coupling phenomena are often reflected in the 
constitutive equations. 
 

2.2.1. Stress-strain behaviour  
 
In order to reproduce the stress-strain behaviour of partially saturated porous media, as the 
shear strength or the collapse phenomena, two separates stress variables are needed. Two 
main approaches exist. The first one uses the Bishop’s effective stress and the suction s 

( )= −g wp p . The Bishop’s effective stress is expressed by (Nuth & Laloui, 2008):   

 

 ( )( )1σ σ′ = − + −rw w rw gb S p S p  (5) 

 
where σ ′  is the Bishop’s effective stress, σ  is the total stress and b is the Biot coefficient. 
 
Other approaches use two separate stress variables, typically net stresses σ ∗  and suction s 

( )= −g wp p . Net stress is defined as the excess of total stress over gas pressure: 

 
 σ σ∗ = − gp  (6) 

 
The general form of the unsaturated constitutive models can be expressed as: 
 

 /σ ε∗′ = +d Dd hds (7) 

 

with /σ ∗′  the Bishop’s effective stress or the net stress, ε  the strain tensor, D  and h  the 

constitutive matrix, respectively for the strain an the suction tensors. 
 
Owing the high preconsolidation pressure of argillite, the plastic behaviour of argillaceous 
rocks is mainly controlled by the shear strength, and not by the collapse phenomena. Using 
only the Bishop’s effective stress allows thus the reproduction of the behaviour, which is the 
option frequently used in the modelling of host rocks behaviour. 
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Different constitutive models are implemented in the finite element codes: 
- elastic model; 
- elastoplastic model perfectly plastic, with different yield surface (Mohr-Coulomb, van 

Eekelen, Drucker-Prager) and potential dilatancy, hardening/softening; 
- Cam-Clay model; 
- Hoek & Brown model; 
- Barcelona Basic Mode (Alonso et al.,1990), which allows the description of the 

volumetric collapse (compression) behaviour upon wetting; 
- damage model; 
- damage – elastoplastic model (Code Bright), which considers the argillaceous rock as 

a composite material made of a clay matrix interlocked by bond. Clay matrix 
behaviour is modelled through an elastoplastic constitutive law, typical of soils. Bonds 
are modelled through a damage elastic law (Carol et al., 2001), typical of quasi-brittle 
materials. A coupling parameter gives the relative importance of clay and bond 
response for the composite material. This law applies to material having a response 
transitional between that of a soil and a rock. The mathematical formulation of the 
damage – elastoplastic model is detailed in the appendix; 

- viscoplastic model using a Drucker Prager criterion (EDF),  the formulation of this 
model is detailed in the appendix. 

 

2.2.2. Solid density variation 
 
For the considered materials and stress levels around radioactive waste disposals, the solid 
grain deformability is no more negligible and the general Biot framework (Biot, 1941) is used 
to model the hydromechanical coupled terms. Following the ideas of Biot, Coussy (2004) 
proposed a thermodynamical framework of the problem, which leads to the expression of the 
porosity variation: 
 

 , ,1
( )φ φ

− Ω= − + + Ω 

ɺ
ɺ ɺ ɺ

r w r w
w g

s s

S S
b p p

k k
 (8) 

 
where b is the Biot coefficient, εΩ Ω =ɺ ɺV  the skeleton volumetric deformation rate and ks is 

the grain compressibility. The porosity variation is used in the fluid balance equations (eq. (3) 
and (4)) in the computation of the storage term. It introduces a coupling term between the 
mechanical behaviour and the fluid transfers. 
 

2.2.3. Fluid transport constitutive equations 
 
A biphasic flow model is considered for the description of the fluid transport processes. The 
liquid phase may contain dissolved air and the gas phase is a mixture of dry air and water 
vapour. The fluid fluxes are described by the advection of each phase and by the diffusion of 
the species in each phase. The following relationships are written for the particular case of a 
binary fluid mixture composed by water and air, but can be easily extended for other binary 
fluid mixtures of water and other gas species (hydrogen, nitrogen, helium, argon…). More 
details are available on section 2.5. 
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2.2.3.1. Advective flux of the liquid phase 
 
The advective flux of the liquid phase is governed by the Darcy’s law: 
 

 ( ) ( )( ).ρ
µ

= − +rww
w wl

w

K  k
q grad p g grad y  (9) 

 
where 

w
K  is the water intrinsic permeability tensor, rwk  is the water relative permeability, µw 

is the water dynamic viscosity, g the gravity acceleration and y the vertical upward directed 
coordinate. 
 

2.2.3.2. Advective flux of the gaseous phase 
 
The advective flux of the gaseous phase is governed by the Darcy’s law: 
 

 ( ) ( )( ).ρ
µ

= − +
rgg

g gg
g

K  k
q grad p g grad y  (10) 

 
where 

g
K  is the gas intrinsic permeability tensor, rgk  is the gas relative permeability, µg is the 

dynamic viscosity of the gaseous mixture, g the gravity acceleration and y the vertical upward 
directed coordinate. 
 
The dynamic viscosity of the gaseous mixture depends on the dynamic viscosity of each 
component of the mixture: 
 

 
1µ ρ ρ

ρ µ ρ µ

=
+

g
a v

g a g v

 (11)  

 
with ρa  and ρv  the density respectively of the dry air and the water vapour, and µa  and µv  

the dynamic viscosity respectively of the dry air and the water vapour. 
 
Other relationships exist for the dynamic viscosity of a gaseous mixture. For instance, in the 
Lagamine code, the dynamic viscosity of the dry air – water vapour mixture is expressed by 
(Wilke, 1949): 
 

 
( ) ( )

( )
( ) ( )

( )

2 2
4 41 1

1 1
2 2 1 2 2 1

µ µµ
µ µ µ µ

= +
+ +

+ +
+ +

a v
g

v a a v v a a v v a a v

a v v a

X X M M X X M M

M M M M

 (12)  

 

with = a
a

g

pX p  the air molar fraction and = v
v

g

pX p  the vapour molar fraction. 
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2.2.3.3. Non-advective flux of water vapour and dry  air  
 
The non-advective flux of water vapour, i.e. diffusive flux, is related to the water vapour bulk 
density gradient (Fick’s law): 
 

 ( ), /1
ρφ τ ρ
ρ

 
= − − = −  

 

v
v r w v a g a

g

i S D grad i  (13) 

 
where /v aD  is the diffusion coefficient in the gaseous mixture dry air – water vapour and τ  is 

the tortuosity of the porous medium. 
 
The diffusion coefficient depends on temperature and gas pressure. Two relations are 
commonly used: the first one for gaseous mixture of dry air and water vapour (Philip and de 
Vries, 1957), the second one for gaseous mixture of another gas species i and water vapour:  
 

 
2,3

6
/ 5,893.10−=v a

g

T
D

p
 (14) 

 

 
1,75

0
/ 0

0

  
=      

g
v i

g

p T
D D

p T
 (15) 

 
where D0 is the diffusion coefficient for a given gas mixture. 
 

2.2.3.4. Non-advective flux of dissolved air  
 
The non-advective flux of dissolved air in the liquid phase, i.e. diffusive flux, is related to the 
dissolved air bulk density gradient (Fick’s law): 
 

 , /

ρφ τ ρ
ρ

−
− −

 
= −  

 

a d
a d r w a d w w

w

i S D grad  (16) 

 
where ρ −a d  is the density of the dissolved air and /−a d wD  is the diffusion coefficient of 

dissolved air in water, which depends on temperature. 
 

2.2.4. Liquid density variation  
 
The compressible fluid is assumed to respect the following relationship (Lewis and Schrefler, 
2000). This predicts an increase of water density as a function of the water pressure, defining 
χw as the liquid water bulk modulus: 
 

 
ρρ
χ

=ɺ ɺw
w w

w

p  (17) 
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2.2.5. Gas density variation 
 
For a gaseous mixture of dry air and water vapour, the ideal gas law is introduced, because the 
moist air is assumed to be a perfect mixture of two ideal gases. The equation of state of 
perfect gas (Clapeyron’s equation) and Dalton’s law applied to dry air, water vapour and 
moist air yields (Pollock, 1986; Gawin et al., 1996): 
 

 
ρ= a

a
a

RT
p

M
 and 

ρ= v
v

v

RT
p

M
 (18) 

 
 = +g a vp p p  and ρ ρ ρ= +g a v  (19) 

 
with Ma and Mv the molar mass respectively of the dry air and the water vapour. 
 

2.2.6. Water absorption / desorption  
 
The relation between the amount of water present in soil pore space (quantified by the degree 
of saturation of liquid Sr,w or the water content w) and the soil suction s is usually referred to 
as the water retention curve. Different analytical expressions of the water retention curve have 
been proposed, based on various meaningful soil characteristics to provide a continuous 
relation between soil suction and the degree of saturation. 

2.2.6.1. Reversible retention curve 
 
The van Genuchten relationship reads: 
 

 

1

1
,

,
max

1
P

−
 −   = = +   −   
 

m

m
r w res

r we
res r

S S s
S

S S
 (20) 

 
where ,r weS  is effective saturation of porous media, resS  is the residual degree of saturation, 

maxS  is the maximum degree of saturation, s is the suction, Pr is the pressure of air entrance, 

m is the shape function coefficient. 
 
Other classical retention curves are proposed or could be defined by user in the different finite 
element codes, as the Vauclin relationship: 
 

 
( )

,
,

max .
λ

−
= =

− +
r w res

r we
res

S S a
S

S S a b s
 (21) 

 
with a, b and λ the material parameters. 
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2.2.6.2. Retention curve with hysteresis behaviour - Lagamine 
 
Experimental data show that the process of desaturation occurs only at suction values greater 
than the air entry-suction. Below this limit, the soil remains saturated while suction is 
positive. Experimental data show also a hysteretic behaviour of the retention behaviour. At 
the same suction, the degree of saturation is lower on a wetting path (water absorption) than 
on a drying path (water desorption). A water retention constitutive model, considering the 
effects of hysteresis and air entry-suction and proposed by François (2008), is introduced in 
the Lagamine code. Hysteresis in water retention behaviour is modelled as a plastic process, 
assuming an analogy between the air-entry suction se (yield limit in the (Sr,w – s plane) and the 
preconsolidation pressure ′cp  (yield limit in the isotropic mechanical plane). Under re-

wetting, a hysteretic phenomenon occurs, also represented by a yielding process. Two plastics 
mechanisms are considered, respectively for drying and wetting paths: 
 
 0≡ − =dry df s s  (22) 

 
 0≡ − =wet d hysf s s s  (23) 

 
where sd is the drying yield limit and shys a material parameter considering the size of the 
water retention hysteris. If the initial state is saturated, the initial drying limit sd0 is equal to 
air-entry suction se and increases when suction overtakes se as follows: 
 

 ( )0 ,exp β= − ∆d d h r ws s S  (24) 

 
where βh  is the slope of the desaturation curve in the ( )ln−rwS s plane. 

 

2.2.7. Permeability variation 
 
The permeability tensor ( )gwpkK rpp

,=  can depend on the degree of saturation for 

unsaturated cases or on the mechanical behaviour (porosity or tensile strain). Different 
constitutive models exist to reproduce the permeability tensor evolution. 
 

2.2.7.1. Water permeability variation with degree o f saturation 
 
The advective fluxes of the liquid and gaseous phases are governed by the Darcy’s law for 
unsaturated cases. In this relation, it is assumed that the effective permeability tensor depends 
on the degree of saturation. A water relative permeability function krw is introduced, 
reproducing the decrease of the water permeability with the drying of the material. Different 
models exist and are introduced in the finite element codes. 
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The van Genuchten function reads: 
 

 

2
1

, ,1 1
  
 = − − 
   

m

m
rw r w r wk S S  (25) 

 
with m a material parameter coming from the van Genuchten’s water retention curve  
(equation 20). 
 
Water relative permeability can be also expressed as a power of degree of saturation. Cubic 
law is generally used: 
 

 ( )3

,=rw r wk S  (26) 

 
Other functions could be defined easily by user. 
 

2.2.7.2. Gas permeability variation with degree of saturation 
 
As for the water relative permeability, a gas relative permeability can be introduced in the 
Darcy’s law for unsaturated cases in order to reproduce the increase of the permeability tensor 
with the degree of saturation. An extension of the van Genuchten – Mualem can be used: 
 

 
21

, ,1 1 = − − 
 

m

mrg r w r wk S S  (27) 

 
with m a parameter coming from the van Genuchten’s water retention curve . 
 
Gas relative permeability can be also expressed as a power of degree of saturation. Cubic law 
is generally used: 
 

 ( )3

,1= −rg r wk S  (28) 

 
Other functions could be defined easily by user. 
 

2.2.7.3. Permeability variation with porosity 
 
The influence of the mechanical behaviour of the material on the permeability tensor can be 
modelled by different ways. The permeability tensor K  can depend on porosity through 

Kozeny-Karman’s law: 
 

 
3 2

0
0

0

1

1

φφ
φ φ
   −=    −  

K K  (29) 

 
where 

0
K  is the initial permeability,φ  is the porosity,0φ  is the initial porosity. 
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Other relationships take into account the coupling between permeability and porosity, as the 
one used in GDR Momas and developed in the Lagamine code or in Code_Aster:  
 

 ( )( )00
1

βα φ φ= + −K K  (30) 

 
where α  and β  are material parameters. 
 

2.2.7.4. Embedded fracture model – Code Bright & La gamine 
 
A specific permeability model (Olivella and Alonso, 2008; Arnedo et al., 2008; Alonso et al., 
2006; Levasseur et al., 2010) can be considered for the argillaceous rocks in WP4. The 
embedded fracture model is available in Code_Bright and Lagamine. The basic idea consists 
in the appropriate representation of single discontinuity representing the rock bedding, which 
is embedded in a continuous finite element. Figure 1 shows, in the left part, a single fracture in 
a porous medium characterized by its aperture b and, on the right,  a finite element composed 
by a rock matrix (in general, a porous medium) and a series of n fractures. The number of 
fractures in an element depends on the width associated with each fracture, a, which will be 
considered a characteristic size of the material, and the element size s (perpendicular to the 
direction of discontinuities). 
 
Liquid and gas flow through a single planar fracture is calculated using Darcy’s law. The 
intrinsic permeability can be calculated, assuming laminar flow, as: 
 

 
2

12
=fracture

b
K  (31) 

 
where b is the aperture of the single fracture. 
 
When a set of n fractures is included in a finite element (Figure 1), the equivalent intrinsic 
permeability Kij of the element in the direction parallel to the fractures can be calculated as: 
 

 
3

1 1

1

12= =

 − −     = + = + ≅ +      
       

∑ ∑
n n

ij matrix fracture matrix fracture matrix
i i

s nb b a s nb b b
K K K K K K

s a s s a n a
 (32) 

 
where Kmatrix is the reference intrinsic permeability of the rock matrix or porous material, i.e. 
the material without fractures, s is the element size (width normal to flow direction), a is the 
width associated with each fracture, and n = s / a is the number of fractures in the element. 
Permeability of the matrix will be relevant only for very low apertures; otherwise fracture 
permeability will dominate the total permeability and matrix permeability will be negligible in 
comparative terms. 
 
The aperture of the fracture can be estimated as a function of deformation in the following 
way: 
 

 
  for  0

( ) ( / )( )  for  

= + ∆ ∆ ≥
∆ = ∆ε = ε − ε = ε − ε ε > ε

o

o o o

b b b b

b a a s n
 (33) 
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b 

 

 

s 

b 

a  

n = s / a  

 
Figure 1. A single fracture characterized by its aperture b (left) and a finite element with a 

series of parallel fractures (right). The width of the element is s, the aperture of the fractures is 
b, the associated width to each fracture is a, and the number of fractures in the element is n. 

 
It has been assumed that deformation is localized and results in changes in aperture. A 
threshold value (εo) is considered. Therefore the changes in aperture start when deformation 
reaches this value. Deformation perpendicular to the fracture plane is to be used when aperture 
changes have to be obtained. The threshold value (εo) is associated with fracture initiation. 
This parameter will be set to zero if the fractures already exist and have an initial aperture bo. 
The initial aperture can be also zero when the fractures exist but are closed.  
 
The variation of capillary pressure induced by fracture aperture changes is also included in the 
Code_Bright (but not in Lagamine code). According to Kelvin’s law the capillary pressure 
necessary to desaturate a fracture is given by: 
 

 1 2

1 1 2 
= + = 

 
oP

r r b

σσ
 (34) 

 
with σ  the surface tension. It is obtained when (1/r1) = 0 and r2 = b/2 (the wetting angle has 
been assumed to be 0). This equation can be used directly to calculate the air entry value of the 
element. If equation (30) is combined with equation (28) the capillary pressure to start 
desaturation is obtained as: 
 

 
3

,

3
= ij o

r o

ij

K
P P

K
 (35) 

 
where P0 is the capillary pressure for a reference permeability Ko, which eventually can be the 
initial permeability. As a first approximation the capillary pressure associated with the 
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discontinuity can be introduced in the standard water retention curve of van Genuchten (van 
Genuchten, 1980). 
 

2.3. Equilibrium restrictions 
 

2.3.1. Kelvin’s law 
 
It is assumed that the water vapour in porous media is always in equilibrium with the liquid 
water. The corresponding equilibrium restriction equation is given by Kelvin’s law for the 
vapour concentration in the gaseous phase: 
 

 
0

exp
ρ

 −= = =  
 

v v
r

v w

p sM
RH h

p RT
 (36) 

 
where = rRH h  is the relative humidity, pv is the partial vapour pressure, pv0 is the water 
vapour saturation pressure at the same temperature, s is the suction, Mv is the molecular mass 
of water vapour (0.018 kg/mol), R is the universal gas constant (8.314 J/(mol K)) and T is the 
absolute temperature in Kelvin. 
 
The water vapour saturation pressure pv0 is the vapour pressure in equilibrium with liquid 
water pressure if the capillary effects are not considered. The saturated vapour concentration 
can be obtained by two empirical relationships. The first one is based on experimental date 
from Ewen et al. (1989) and is used in the Lagamine code or in Code_Aster: 
 

 ( ) ( )( )23

0

1
194,4exp 0,06374 273 0,1634.10 273

ρ
−= − − + −

v

T T  (37) 

 
for temperature range between 293 K and 331 K. 
 
Other relation gives an adequate estimation, based on data from Garrels & Christ (1965): 
 

 ( ),0

5192,74
112659.exp

− =  
 

vp MPa
T

 (38) 

 
for temperature range between 273 K and 373 K. 
 

2.3.2. Henry’s law  
 
The amount of dissolved air in the liquid phase is always in equilibrium and proportional with 
the quantity of dry air. The amount of dissolved air is given by Henry's law (Weast, 1971). 
 
 ( )ρ ρ− =a d a aH T  (39) 

 
where Ha is Henry’s coefficient for dissolved air, depending on temperature. 
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2.4. Water parameters for fluid transport relations  
 
The constitutive equations proposed for a binary mixture of water and air depends on some 
parameters of water (liquid water or water vapour), defined in the  
Table 1. 
 

  Liquid water Water vapour  

Dynamic viscosity µ  10-3 10-5 Pa.s 

Density ρ  1000 
Psychrometric 

restriction 
kg/m³ 

Bulk modulus χ  2 109 Ideal gas relation Pa 

 
Table 1 : Main water parameters for fluid transport relations for T=20°C and pw=pg=0.1 MPa 

 

2.5. Gas parameters for fluid transport relations 
 
The general framework for the modelling of unsaturated porous media previously described 
assumes a binary fluid mixture: water and air. The balance equations and the constitutive 
relations can be extended when other binary fluid mixtures are considered, especially for 
water and other gas species (hydrogen, nitrogen, helium, argon…). In these cases, the 
presence of air in the porous media is neglected. Even tough the constitutive equations are 
similar, parameters of the models depend on the gas species, as presented in the Table 2. 
 

  Air Hydrogen Nitrogen Helium Argon  

Dynamic viscosity µa  18,6 10-6 9 10-6 17,9 10-6 20 10-6 22,9 10-6 Pa.s 

Diffusion coefficient 
in gaseous phase 

with water vapour 
D0 

Equation 
(14) 

9,5 10-5 2,42 10-5 7,81 10-5 3,04 10-5 m²/s 

Diffusion coefficient 
of dissolved gas in 

liquid phase 
/−a d wD  5,03 10-9 4,6 10-9 2 10-9 7,28 10-9 2,5 10-9 m²/s 

Density ρa  1,205 0,0838 1,1652 0,1663 1,6619 kg/m³ 

Henry’s coefficient Ha 0,0234 0,0190 0,0149 0,0091 0,0342 - 

 
Table 2 : Main gas parameters for fluid transport relations for T=20°C and pw=pg=0.1 MPa 
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3. Conclusions 
 
In the framework of the European Forge project, modelling of laboratory or in-situ gas 
migration tests will be performed by Université de Liège, Electricité de France and 
Universitat Politècnica de Catalunya. The different finite element codes are Lagamine (ULg), 
Aster (EDF) and Code_Bright (UPC). All these codes deal with thermo-hydro-mechanical 
problems with partial saturation in porous media, including the gas transfers. 
 
In this report, the initial state of the numerical codes and the main conceptual models existing 
at the beginning of the project have been described. The general framework for unsaturated 
porous media has been presented. The constitutive equations of the mechanical and the fluid 
transfers problems have been described. The main differences between the finite element 
codes have been highlighted. It mainly concerns the description of the permeability tensor 
evolution with the mechanical behaviour. Finally, a review of the values of the main water 
and gas fluid parameters has been presented. 
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5. Appendix 
 

5.1. Damage – Elastoplastic model – Mathematical fo rmulation - 
UPC 

 
The mathematical formulation of the damage – elastoplastic model proposed by UPC is 
described hereafter. For this model, equations are written assuming soils mechanics 
compression (p > 0, εv > 0 for compression). p is the mean effective stress, J the square root of 
the second invariant of deviatoric stress tensor, θ the Lode’ angle (-30º in triaxial 
compression, +30º in triaxial extension). 
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Clay matrix behaviour 
 
Elastic law:  

 ( )M eM M p
ij ijkl ij kld D d dσ ε ε= −  (40) 

 
 

eM
ijklD  is defined by a transversal isotropic elastic model based on the model presented by 

Wittke (1990), which considers 5 material parameters plus 2 anisotropy directions describing 
the bedding orientation. 
 
Yield function : 2 kind of yield criteria are considered 
 
Mohr-Coulomb: 
 

 1
cos sin sin ' sin '( ) 0

3
p M M M M

tF J p pθ θ φ φ = + − + ≥ 
 

 (41) 

 
'cot 'tp c φ=  is clay matrix tensile strength, c’ clay matrix cohesion, φ’  clay matrix friction 

angle. 
 
Hoek & Brown (1980): 
 

 

2

2

4sin
2 sin6

( ) 0
3

M
M

p M M M
t

c

m
F J J m p p

R

πθ
θ

 − 
 = − − + ≥  (42) 

 
/t cp R m=  is clay matrix tensile strength, Rc clay matrix uniaxial compressive strength, m a 

parameter defining the shape of the parabolic yield criterion. 
 
Both yield criteria present corners in the deviatoric plane. They are smoothed using Sloan & 
Booker (1986) procedure. Lode’s angle θt at which smoothing starts must be defined (see ICL 
= 74). 
 
Rate dependency: Rate dependency is introduced as a visco-plastic mechanism. Plastic 
multiplier λp is expressed as a function of the distance between the current clay matrix stress 
point and the inviscid  plastic locus: 
 

 p p

M

dt
d Fλ

η
=  (43) 

 
where dt is the time increment, ηM is the clay matrix viscosity and 〈〉 are the Macauley 
brackets. Inviscid plastic locus takes the form: 
 

 0p p pMF F d
dt

η λ= − ≤  (44) 

 
where Fp can be either the Mohr Coulomb or Hoek & Brown yield criterion. 
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Plastic potential: a non associated plastic potential in the p-q diagram is defined for each 
yield criterion. In the deviatoric plane, plastic potential is considered associated. 
 
Mohr-Coulomb: 
 

 1
cos sin sin ' sin '( ) 0

3
p M M M M

tF J p pθ θ φ ω φ = + − + ≥ 
 

 (45) 

 
pt, c’ and φ’  are parameters defining the yield criterion. ω is a parameter defining the non 
associativity of the flow. It takes a value equal to 1 when associated and equal to 0 for null 
dilatancy.  
 
Hoek & Brown: 
 

 

2

2

4sin
2 sin6

( ) 0
3

M
M

p M M M
t

c

m
F J J m p p

R

πθ
θ ω

 − 
 = − − + ≥  (46) 

 
pt, Rc and m  are parameters defining the yield criterion. ω is a parameter defining the non 
associativity of the flow. It takes a value equal to 1 when associated and equal to 0 for null 
dilatancy.  
 
Hardening law: in the case in which only matrix behaviour is considered (bonds constitutive 
law is not activated), it is possible to define a degradation law for the plastic hardening 
parameter. If bonds are considered, degradation is due to bond degradation and matrix 
behaviour is considered perfectly plastic. 
 
Mohr-Coulomb: 
 

 1
0

max( , )
' cotan ' 1 (1 )

p
r

t
r

p c
ε ξφ α
ξ

 
= − − 

 
 (47) 

 
c’0 is the intact cohesion, α a brittleness parameter, εp

1 is the major principal plastic strain, ξr 
the accumulated major principal plastic strain at which the residual cohesion α c’0 is reached. 
α = 1 means perfect plasticity, α = 0, total degradation (residual cohesion equal to 0).  
 
Hoek & Brown: 
 

 
2

0 1max( , )
1-(1 )

p
c r

t
r

R
p

m

ε ξα
ξ

 
= − 

 
 (48) 

 
Rc0 is the intact strength, α a brittleness parameter, εp

1 is the major principal plastic strain, ξr 
the accumulated major principal plastic strain at which the residual strength α2Rc0 is reached. 
α = 1 means perfect plasticity, α = 0, total degradation (residual strength equal to 0). 
 
Bond behaviour 
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Elastic law:  

 ( )b eb b d
ij ijkl ij kld D d dσ ε ε= −  (49) 

 
eb
ijklD is the secant damaged elastic matrix. It is related to the secant undamaged elastic tensor 

0eb
ijklD by 0eb L eb

ijkl ijklD e D−= . L is the damage variable, related to the ratio of bond mickocraks area 

over the whole bond area. 0eb
ijklD is defined by the undamaged bond Young’s modulus Eb and 

bond Poisson’s ratio νb through the classical linear isotropic elasticity. 
 
Damage locus: Damage locus is defined as an energy threshold 
 

 
1

2
d b b b

ij ijF rσ ε= −  (50) 

 
rb is the value of energy threshold. 
 
Rate dependency: Rate dependency is introduced as a delayed microcracking and use the 
visco-damage formalism. Damage variable is expressed as a function of the distance between 
the current bond stress point and the infinitely slow damage locus: 
 

 d

b

dt
dL F

η
=  (51) 

 
where dt is the time increment, ηb is the bond viscosity and 〈〉 are the Macauley brackets. 
Infinitly  low damage locus takes the form: 
 

 0d d bF F dL
dt

η= − ≤  (52) 

 
Damage rule: Damage rule gives the evolution of damage strain d

kldε  with damage variable L. 

This relation is constrained by bond elastic moduli evolution and must take the form: 
 

 d b
kl ijd dLε ε=  (53) 

 
Damage evolution law: It gives the evolution of damage locus rb with damage variable L. A 
simple linear expression is considered: 
 

 0 1
br r r L= +  (54) 

 
r0 is the damage of the intact material and r1 a parameter giving the rate of evolution (higher 
value of r1 gives lower damage rate). 
 
Coupling behaviour: Coupling comes from the restrictions that local strain M

ijε and b
ijε must be 

compatible with the external strain ijε  and local stressesM
ijσ and b

ijσ must be in equilibrium 

with external stresses ijσ . These restrictions read: 
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 ijbijijM ddd εεε +=  (55) 

 
 ( ) ijbijMij χσσχσ ++= 1 with

2
0

Le−= χχ  (56) 

 
L is the damage variable and χ0 a coupling parameter that gives the relative importance of 
bond and clay matrix behaviour in the overall response of the composite material. 
 
 

5.2. Drücker-Prager Viscoplastic model – Mathematic al 
formulation - EDF 

 
This section will describe the mathematical formulation of the viscoplastic model based on 
Drücker Prager criterion developped in Code_Aster. The proposed model is based on only 
one viscoplastic mechanism. The viscoplastic criterion hardening is due to the cumulated 
deviatoric plastic deformation, passing through three steps called thresholds: the initial 
threshold for a null viscoplastic deformation, the peak threshold for a peak deformation 
(parameter of the model) and a final threshold for a deformation beyond the ultim one (a 
parameter of the model). The stress state can be out of the threshold but it turns back with a 
speed proportional to the distance between the stress state and the threshold according to 
Perzyna law. The flow is not associated, the flow potential is a Drucker-Prager one which 
hardens according to three levels (initial, peak, and ultim). Between the thresholds, hardening 
is linear. 
In the following, p is the accumulated viscoplastic strain, IIS  the second invariant of 

deviatoric stress tensor, 1I  the first invariant of stress, eD  the elastic tensor. 

 
In this model, the yield surface is defined by : 

)()(
2

3
1 pRIpSf II −+= α  

with, )( pα , )(pR  function of p. 
The viscoplastic potential G is defined by 

1)(
2

3
IpSG II β+=  

 
To describe evolution of f  and G, three levels are defined corresponding to three thresholds ; 
the initial one matches the elastic part without viscoplastic deformation, the peak threshold  
the peak threshold which caracterizes the maximal stress state and a final threshold 
corresponding to the residual state. Between the initial and the peak thresholds the behaviour 
is hardening. Between the peak and the residual thresholds the behaviour is softening. 
 
We note thereafter : 

000 ,, βα R hardening parameters linked to elastic threshold ( )0=p  

pkpkpk R βα ,, hardening parameters linked to peak threshold ( )pkpp =  

ultultult R βα ,, hardening parameters linked to final threshold ( )ultpp =  
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Then, Cohesion functions are defined as following: 
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the dilatancy functions are: 
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and the hardening functions: 
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Stress and strains are linked with a classical hooke’s law: 
( )vp

eD εεσ −=  

The viscoplastic deformation is controled by the Perzyna law: 
 
 

dt
G

p

f
Ad

ij

n

ref

vp
ij σ

ε
∂
∂=  

with refp the reference pressure (atmospheric pressure) and A creeping parameter. 
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