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Fate of repository gases (FORGE) 

The multiple barrier concept is the cornerstone 
of all proposed schemes for underground 
disposal of radioactive wastes. The concept 
invokes a series of barriers, both engineered and 
natural, between the waste and the surface. 
Achieving this concept is the primary objective of 
all disposal programmes, from site appraisal and 
characterisation to repository design and 
construction. However, the performance of the 
repository as a whole (waste, buffer, engineering 
disturbed zone, host rock), and in particular its 
gas transport properties, are still poorly 
understood. Issues still to be adequately 
examined that relate to understanding basic 
processes include: dilational versus visco-
capillary flow mechanisms; long-term integrity of 
seals, in particular gas flow along contacts; role 
of the EDZ as a conduit for preferential flow; 
laboratory to field up-scaling. Understanding gas 
generation and migration is thus vital in the 
quantitative assessment of repositories and is 
the focus of the research in this integrated, 
multi-disciplinary project. The FORGE project is a 
pan-European project with links to international 
radioactive waste management organisations, 
regulators and academia, specifically designed to 
tackle the key research issues associated with 
the generation and movement of repository 
gasses. Of particular importance are the long-
term performance of bentonite buffers, plastic 
clays, indurated mudrocks and crystalline 
formations. Further experimental data are 
required to reduce uncertainty relating to the 
quantitative treatment of gas in performance 
assessment. FORGE will address these issues 
through a series of laboratory and field-scale 
experiments, including the development of new 
methods for up-scaling allowing the optimisation 
of concepts through detailed scenario analysis. 
The FORGE partners are committed to training 
and CPD through a broad portfolio of training 
opportunities and initiatives which form a 
significant part of the project.  
Further details on the FORGE project and its 
outcomes can be accessed at 
www.FORGEproject.org.
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1 Introduction 

 

The HG-A test is located in the Mont Terri Rock Laboratory, near Saint Ursanne (Jura, 

Switzerland). It consists of a horizontal borehole of 1.00 m of diameter and 13.00 m of length 

excavated in the ultra-low permeable Opalinus clay. During the tunnel drilling, the Opalinus 

clay near the tunnel wall was damaged, giving rise to an EDZ (Excavation Damaged Zone) 

around the tunnel.  After drilling the tunnel, a steel liner was placed along the 6.00 m close to 

the tunnel mouth (the liner section) in order to guarantee the tunnel stability. Then, the last 

4.00 m at the tunnel end (the test section) were backfilled with gravel. Finally, along the 

remaining 3.00 m (the megapacker section), an inflatable rubber packer, similar to those used 

to isolate intervals in a borehole but of 1.00 m in diameter (the megapacker), was installed 

and inflated, thereby compressing the EDZ that was created during the tunnel excavation. The 

test section was filled with de-aired water and care was taken in order to eliminate the air 

from this tunnel section. Subsequently, a series of water and gas injection tests were carried 

out with varying megapacker pressure, whereby water or gas was injected into the test section 

and, due to the very low permeability of the intact Opalinus clay, forced to flow back along 

the EDZ. A description of the HG-A in situ test, including installation and operation, a 

characterisation of the EDZ induced around the tunnel and results obtained from this test may 

be found in Marschall et al. (2006), Marschall et al. (2008) and Lanyon et al. (2008). Gas 

transport properties of the Opalinus clay may are presented in Marschall et al. (2005). Details 

of the instrumentation of the HG-A in-situ test are given in Trick et al. (2007). 

 

The formation of the EDZ due to the tunnel excavation has been previously modeled using a 

3D finite numerical model using code_bright (a finite element code developed at the 

Geotechnical Engineering Department of the UPC), whereby an anisotropic linear elastic 

material coupled with a constant anisotropic intrinsic permeability was used to model the 

Opalinus clay. In order to model the water and gas flow through the EDZ, we have followed a 

two-track approach. On the one hand, a 2D axisymmetric numerical model using code_bright 

has been made. On the other hand, a 1D analytical-numerical model has been developed and 

implemented in an Excel spreadsheet, whereby the field equations defined on a 1D 

geometrical domain are numerically solved using the finite element method. The 1D model 

has been used in order to calibrate the 2D axisymmetric model. In this report, the 1D model 

will be described in detail, and some of their results will be shown. 

 

It should be mentioned that, from the point of view of the formulation leading to the field 

equations, the differences between the 1D model and the 2D axisymmetric model using 

code_bright are essentially the simplifying assumptions whereas, from the numerical point of 

view, the numerical solution of the 1D model follows more closely the standard Galerkin 

approach that is frequently used in the Finite Element Method.  
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2 Modelling approach 

 

The modelling approach in based on Olivella et al. (1994). Both the Opalinus clay and the 

EDZ will be considered to be porous media, with a solid phase (with one species: clay), a 

liquid phase (with two species: water and air) and a gas phase (with two species: water and 

air). In principle, balance of mass, momentum and energy should be established for the 

various species in the various phases present in the porous medium. However, equilibrium 

restrictions and constitutive relations will allow dropping some of them.  

 

Exchanges of both species water and species air between the liquid phase and the gas phase 

will be allowed. However, it will be assumed that they are always in equilibrium. It will be 

assumed that motions are slow so that terms involving accelerations and products of velocities 

may be neglected. Finally, it will be assumed that temperature remains constant everywhere. 

 

By combining the balance equations, the equilibrium restrictions and the constitutive 

relations, we get the field equations with the displacement vector of the solid phase su , the 

pressure of the liquid phase lp  and the pressure of the gas phase gp  as unknown functions of 

the space position and time. 

 

2.1 Balance equations for a porous material with two fluid phases 

 

Balance equations are general equations (independent of constitutive assumptions) stating 

fundamental physical principles concerning mass, momentum and energy 

 

 Balance of mass 
 

As explained later, due to the assumption of phase change equilibrium, the balance of mass 

needs only be considered for the solid phase, for the species water and for the species air 

 

{ (1 )}+ { (1 ) } 0s s sdiv
t
   


  


v  (2.1) 

{ + }+ { ( ) } 0w w w w w w w w

l l l g g g l l l l g g g g g g g l l l sS S div S S
t
              


     


i q i q v  (2.2) 

{ + }+ { ( ) } 0a a a a a a a a

l l l g g g l l l l g g g g g g g l l l sS S div S S
t
              


     


i q i q v  (2.3) 

 

where s  is the density of the solid phase, l  is the density of the liquid phase, g  is the 

density of the gas phase,   is the void ratio, lS  and gS  are the degree of saturation of the 

liquid phase and of the gas phase, sv  is the velocity of the solid phase,  
w

l  and 
a

l  are the 

mass fractions of species water and of species air in the liquid phase, w

g  and a

g  are the mass 

fractions of species water and of species air in the gas phase, lq  and gq  are the volume fluxes 

of the liquid phase and of the gas phase with respect of the solid phase ( ( )l l l sS q v v  and 

( )g g g sS q v v , where lv  and gv  are the velocities of the liquid phase and of the gas 

phase), 
w

li  and 
a

li  are the mass fluxes with respect to the liquid phase of the species water in 
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the liquid phase and of the species air in the liquid phase ( ( )w w w

l l l l l lS   i v v  and 

( )a a a

l l l l l lS   i v v , where w

lv  and a

lv  are the velocities of the species water in the liquid 

phase and of the species air in the liquid phase) and w

gi  and a

gi  are the mass fluxes with 

respect to the gas phase of the species water in the gas phase and of the species air in the gas 

phase ( ( )w w w

g g g g g gS   i v v  and ( )a a a

g g g g g gS   i v v , where w

gv  and a

gv  are the 

velocities of the species water in the liquid phase and of the species air in the liquid phase). 

 

The balance of mass of the solid phase (2.1) may be integrated, obtaining 

 
0 0(1 ) (1 )s

s sJ       , (2.4) 

 

where sJ  is the Jacobian of the motion of the solid phase, 0

s  is the density of the solid phase 

at the corresponding point in the reference configuration and 0  is the porosity at the 

corresponding point in the reference configuration. Using the relation (small strains) 

 

,1s s volJ    (2.5) 

 

we arrive to 

 
0 0

,(1 ) (1 ) (1 )s vol s s        . (2.6) 

 

Because of the assumption of equilibrium of the exchange of the species water and of the 

species air between the liquid phase and the gas phase, the balance of mass for the species 

water in the liquid phase, the balance of mass for the species air in the liquid phase, the 

balance of mass for the species water in the gas phase and the balance of mass for the species 

air in the gas phase are not needed. However, they allow calculating the mass rates of 

exchange of the species water and of the species air between the liquid phase and the gas 

phase, as shown below. 

 

 Balance of momentum 
 

If motions are slow, then the balance of momentum for the porous medium as a whole reads 

 

+div   0g , (2.7) 

 

where   is the (total) stress tensor of the porous medium,   is the (total) density of the 

porous medium ( (1 ) s l l g gS S          ) and g  is the gravity acceleration . 

 

The balance of momentum for the liquid and the gas phases will be replaced by generalized 

Darcy’s laws appropriate for unsaturated materials. These laws correspond to the balance of 

momentum for the liquid phase and for the gas phase and to constitutive assumptions for the 

stress tensors of each of these phases and for the exchange of momentum of each of these 

phases with the other phases. They are presented with the constitutive relations. The balance 

of momentum of the solid phase may be obtained by noting that the sum of the balance of 

momentum for the solid phase, for the liquid phase and for the gas phase is the balance of 
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momentum for the porous medium as a whole (2.7), whereby the assumption of slow motions 

is taken into account. 

 

The balance of momentum for the species water and for the species air in the liquid phase and 

in the gas phase will be replaced by Fick’s laws. These laws correspond to the balance of 

momentum for the species water and the species air in the liquid phase and in the gas phase 

and to constitutive assumptions for the stress tensors of the species water and the species air 

in the liquid phase and in the gas phase and for the exchange of momentum of each of these 

two species in each of these two phases with the other species in the other phases. 

 

The sum of the balance of momentum of the species water and of the species air in the liquid 

phase is the balance of momentum of the liquid phase, taking into account the assumption of 

slow motions. Similarly, the sum of the balance of momentum of the species water and of the 

species air in the gas phase is the balance of momentum in the gas phase, taking into account 

the assumption of slow motion. 

 

 Balance of energy 
 

Because of the assumption that temperature is everywhere constant, the various balances of 

energy are not needed. 

 

2.2 Equilibrium restrictions 

 

The processes considered are restricted by certain constraints placed on some variables of the 

porous medium implied by the assumption of slow motions. The equilibrium conditions 

considered are: mechanical equilibrium, thermal equilibrium and phase change equilibrium. 

 

 Mechanical equilibrium 
 

Due to the assumption of slow motion, inertial terms and terms involving the product of 

velocities are neglected in the balance of momentum equations.  

 

 Thermal equilibrium 
 

We assume that the exchanges of energy between the various species in the various phases are 

much faster than the evolution of the porous medium, thereby implying that at any space point 

and time instant their temperatures are equal. Furthermore, we assume that the evolution of 

the porous medium takes places under isothermal conditions. 

 

 Phase change equilibrium 
 

We assume that species water and species air are in equilibrium with respect to phase changes 

between the liquid phase and the gas phase. In this regard, we will assume that the 

psychrometric law and Henry’s law hold 

 

0

( )
( ) exp

(273.15 ) (273.15 )

g l ww w w
g g g

l

p p MM
p T

R T R T
 



  
  

  
     and (2.8) 

(273.15 )
( )a a

l g g

w

R T

HM
  


 , (2.9) 
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where 0.018wM kg mol  is the molar mass of water, 0.02895aM kg mol  is the molar 

mass of air, 6 38.3144521 10 ( )R MPa m K mol      is the ideal gases constant,  T  is the 

temperature in °C, 410H MPa  is Henry’s constant and 
0 ( )w

gp T  is the  water vapour 

pressure in equilibrium with liquid water through a planar surface, whose expression has been 

taken to be 

 

0

5239.7
( ) 136075exp

273.15

w

gp T
T

 
  

 
, (2.10) 

 

where 
0 ( )w

gp T  is in MPa and T  is in °C. 

 

Due to the assumed phase change equilibrium, the exchanges of the species water and of the 

species air between the liquid phase and the gas phase may be computed by establishing the 

balances of mass of species water in the liquid phase, the balance of species air in the liquid 

phase, the balance of species water in the gas phase and the balance of species air in the gas 

phase 

 

{ }+ { }w w w w w

l l l l l l l l l l s lS div S f
t
       


  


i q v , (2.11) 

{ }+ { }w w w w w

g g g g g g g g g g s gS div S f
t
       


  


i q v , (2.12) 

{ }+ { }a a a a a

l l l l l l l l l l s lS div S f
t
       


  


i q v      and (2.13) 

{ }+ { }a a a a a

g g g g g g g g g g s gS div S f
t
       


  


i q v , (2.14) 

 

where 
w

lf  and w

gf  are the mass rates of species water being converted to the liquid and gas 

phases (equations (2.11), (2.13) and the balance of the species water (2.2) imply 

0w w

l gf f  )  and 
a

lf  and a

gf  are the mass rates of species air being converted to the liquid 

and gas phases (equations (2.12), (2.14) and the balance of the species air (2.3) imply 

0a a

l gf f  ). 

 

2.3 Constitutive relations 

 

Constitutive relations characterize the material properties of the components of the considered 

porous medium as well as their interactions. 

 

 Constitutive relations for the porous medium 

 

The water retention curve determines the degree of saturation lS  of the porous medium as a 

function of the pressure of the liquid phase lp  and the pressure of the gas phase gp . We have 

used van Genuchten’s water retention curve 
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1

1

0

1

1

g l

g l

l

g l

p p
p p

S P

p p









 
          

 
 

, (2.15) 

 

where   ( 0 1  ) is a model parameter and 0P  ( 0 0P  ) depends on the intrinsic 

permeability k  according to the expression 

 

0 3

C
P

k
 , (2.16) 

 

where C  ( 0C  ) is a constant. In order to determine this constant, we use the expression 

 

3
0 matrix matrixC P k , (2.17) 

 

where 0 matrixP  and matrixk  are the values of 0P  and k  for the matrix of the material, that is, 

without cracks (see equation (2.22) below). 

 

We use a generalization of Darcy’s law to unsaturated conditions for the motion of the liquid 

and gas phases with respect to the solid phase. 

 

 
( ) ( )

( )rl l vol
l l l

l

k S k
grad p  





q g      and (2.18) 

( ) ( )
( )

rg g vol

g g g

g

k S k
grad p    





q g , (2.19) 

 

where the relative permeabilities of the liquid and gas phases are given by 

 
2

11 2( ) 1 (1 )l l

rl l l lk S S S
           and (2.20) 

( ) gn

rg g g gk S A S , (2.21) 

 

where l , gn  and gA  are model parameters and the intrinsic permeability, as proposed in 

Olivella et al (2008),  is assumed to be isotropic and given by the sum of the contributions 

from the matrix (uniform flow) and from the cracks (Poiseuille flow depending on the crack 

aperture) 

 

31
( ) [ ( )]

12
vol matrix volk k b

a
    (2.22) 

 

where matrixk  is the constant matrix permeability, a  is the mean spacing between cracks and  

( )volb   denotes the crack aperture as a function of vol  defined by  
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0 0

0 0 0 0 0

0 0

( ) ( ) ( ) /

( ) /

vol vol

vol vol vol vol vol vol max

max vol max vol

b

b b a b b a

b b b a

 

     

 




      
   

 (2.23) 

 

where 0vol  is the volumetric deformation at which the crack aperture starts increasing, 0b  is 

the minimum crack aperture, maxb  is the maximum crack aperture and a  is the mean spacing 

between cracks. 

 

The dependency of the intrinsic permeability on the crack aperture, which is related to the 

volumetric deformation of the porous medium, is very important for the modelling of the 

HG-A test. Figure 2-1 below shows an example of the dependency of the intrinsic 

permeability (in logarithmic scale) and of the crack aperture with the volumetric deformation, 

whereby the parameters have values suitable for the HG-A test. Note the large variations in 

the intrinsic permeability induced by the volumetric deformations. 
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Figure 2-1. Evolution of the crack aperture (left) and of the intrinsic permeability (right, in 

logarithmic scale) as a function of volumetric deformation (
17 210matrixk m , 

7

0 10b m , 

5

max 10b m , 
310a m , 

3

0 10vol   ). Circles indicate the initial state, at 0  . 

 

Finally, we use Fick’s law for the motion of the water and gas species with respect to the 

liquid and gas phases. 

 

( ) ( )w w w

l l l l l lS D grad    i I D  (negligible term with respect to conduction) (2.24) 

( ) ( )a a a

l l l l l lS D grad    i I D  (important term) (2.25) 
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( ) ( )w w w

g g g g g gS D grad    i I D  (2.26) 

( ) ( )a a a

g g g g g gS D grad    i I D , (2.27) 

 

where the diffusion coefficients of the water species in the liquid and gas phases are given by 

 

exp
(273.15 )

w a l
l l l

Q
D D D

R T

 
   

 
 (2.28) 

(273.15 ) gQ

w a

g g g

g

T
D D D

p


   (2.29) 

 

where lD  and lQ  (resp. gD  and gQ ) are model parameters for the liquid (resp. gas) phase and 

the dispersion tensors are given by 

 

1
| | ( )

| |

t l t

l l l l l l l

l

d d d    D q I q q
q

  (in 1D flow, | |l

l z l l zd D e q e ) (2.30) 

1
| | ( )

| |

t l t

g g g g g g g

g

d d d    D q I q q
q

, (in 1D flow, | |l

g z g g zd D e q e ) (2.31) 

 

where 
l

ld  and 
t

ld  (resp. l

gd  and t

gd ) are the longitudinal and transversal dispersivity 

coefficients of the liquid (resp. gas) phase. 

 

 Constitutive relations for the solid phase 

 

It has been assumed that the solid phase has only one species. The solid phase has been 

assumed to be incompressible 

 

s const  . (2.32) 

 

 Constitutive relations for the liquid phase 

 

The liquid phase has also been assumed to be a mixture of two species (water and dissolved 

air). However, their properties have been assumed to be independent of the amount of 

dissolved air. It has been assumed that the liquid phase is incompressible. 

 

( ) 1002.6exp( 0.00024 )l T T    (2.33) 
12( ) 2.1 10 exp(1808.5 / (273.15 ))l T T     (2.34) 

 

where l  is in kg/m
3
 , ( )l T is in MPa·s and T  is in °C. 

 

 Constitutive relations for the gas phase 

 

The gas phase has been assumed to be a mixture of two species (water vapour and air). It has 

been assumed that each species (water vapour and dry air) is an ideal gas and that Dalton’s 

law holds. 
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12( ) 1.48 10 (273.15 ) / (1 119 / (273.15 ))g T T T        (2.35) 

a w

g g gp p p     Dalton’s law (2.36) 

(273.15 )a a

g g g

a

R T
p

M
 


  ideal gas law for dry air (2.37) 

(273.15 )w w

g g g

w

R T
p

M
 


  ideal gas law for water vapour (2.38) 

 

where ( )g T  is in MPa·s and T  is in °C. 

 

 Constitutive relations for the solid skeleton 

 

Finally, we will also assume that a generalized form of Terzaghi’s effective stress principle 

holds and the deformation stress tensor of the solid phase   depends on the total stress tensor 

 , the liquid phase pressure lp  and the gas phase pressure gp  through the effective stress 

tensor   defined (using the continuum mechanics sign convention) by the expression. 

 

*p   I  , (2.39) 

 

where the effective fluid pressure is defined by 

 

* max( , )l gp p p . (2.40) 

 

The solid skeleton will be assumed to be an isotropic linear poroelastic material obeying to 

Hooke’s law.  In a Cartesian coordinate system oriented along the common principal 

directions of the stress and strain tensors, Hooke’s law reads 

 

1 1 2 3

1
( )

E
              


 

2 1 2 3

1
( )

E
               


 

3 1 2 3

1
( )

E
               


, 

(2.41) 

 

where E  is the effective Young’s modulus and   is the effective Poisson’s ratio. We will 

assume that 1 1 2   , so that Hooke’s law (2.41) is invertible. 

 

2.4 Field equations 

 

Combining the balance equations, the equilibrium restrictions and the constitutive relations 

we get a system of differential equations with the displacement vector of the solid skeleton 

su , the pressure of the liquid phase lp  and the pressure of the gas phase gp  as unknown 

functions of the space position and time. 

 

The balance of mass of the solid phase (using s const  ) and the balance of water mass read 
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+ ( ) ( )s sdiv div
t








v v  (2.42) 

( + ) ( + ) + ( )

+( ) ( )+( ) ( ) 0

w w w w w w w w

l l l g g g l l l g g g l l l l g g g g

w w w w

g g g l l l s s g g g l l l

S S S S div
t t

S S div grad S S


            

         

 
   

 

  

i q i q

v v

 (2.43) 

 

Combining these equations, we get 

 

( + ) ( + ) +

( + ) ( )+ ( ) 0

w w w w

l l l g g g s l l l g g g

w w w w w w

l l l g g g s l l l l g g g g

S S grad S S
t

S S div div

        

       

 
 

 

    

v

v i q i q

 (2.44) 

 

Neglecting the second term and using the relation (small strains) 

 

,
( )

s vol

sdiv
t





v  (2.45) 

 

we arrive to 

 

,
( + ) ( + )

+ ( ) 0

s volw w w w

l l l g g g l l l g g g

w w w w

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q

 (2.46) 

 

Similarly, the balance of mass of the solid phase (using s const  ) and the balance of air 

mass, yield 

 

,
( + ) ( + )

+ ( ) 0

s vola a a a

l l l g g g l l l g g g

a a a a

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q

 (2.47) 

 

On the other hand, using s const   in the integrated form (2.6) of the balance of mass of the 

solid phase, we arrive to 

 
0

,

1
1

1 s vol







 


. (2.48) 

 

This relation allows to express the porosity   as a function of the derivatives of the 

displacement vector of the solid phase su . 

 

Therefore, upon using the rest of the balance equations, the equilibrium restrictions and the 

constitutive relations, the balance of mass of the species water, the balance of mass of the 

species air and the balance of momentum of the porous medium 
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,
( + ) ( + )

+ ( ) 0

s volw w w w

l l l g g g l l l g g g

w w w w

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q

 (2.49) 

,
( + ) ( + )

+ ( ) 0

s vola a a a

l l l g g g l l l g g g

a a a a

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q
 

(2.50) 

( * )+div p   0I g , (2.51) 

 

may be written in terms of the displacement vector of the solid skeleton su , the pressure of 

the liquid phase lp  and the pressure of the gas phase gp  and their partial derivatives. 

Appendix A1 shows the expressions of some of the functions appearing in these equations as 

functions of the liquid phase lp  and on the pressure of gas phase gp  and their first partial 

derivatives. 

 

This system of differential equations in the unknown functions su , lp  and gp  will be 

referred to as the system of field equations. In order to solve this system of differential 

equations, suitable initial and boundary conditions reflecting the conditions of the HG-A test 

must be provided. Once the unknown functions are determined as a function of the space 

point and of time, all the functions of interest are found from them 

 

2.5 Transition between saturated and unsaturated states 

 

As already mentioned, the unknown functions su , lp  and gp  are defined at every point of the 

geometrical domain and at all times and are found by solving the system of field equations 

with suitable initial and boundary conditions. 

 

On the other hand, using the psychrometric law and Henry’s law as equilibrium restrictions 

(stating the phase change equilibrium of water species and of air species between a gas phase 

and a liquid phase made of these two species), the ideal gases law for the water vapor, the 

ideal gases law for dry air and Dalton’s law, it is possible to express gp , g , w

g  and a

g  as a 

function of lp , l , 
w

l  and 
a

l  or, conversely, to express lp , l , 
w

l  and 
a

l  as a function 

of gp , g , w

g  and a

g . 

 

We note that the water retention curve is a continuous function ( )l g lS f p p   such that 

1lS   (saturated state) if and only if g lp p  and 1lS   if and only if g lp p . This has the 

following consequences 

 

 Mechanical. The effective fluid pressure * ( , )l gp f p p  is a continuous function of lp  

and gp , such that * lp p  if and only if g lp p  and * gp p  if and only if g lp p . 

Consequently, the effective stress tensor   is Terzaghi’s effective stress tensor lp I  if 

and only if g lp p  and is the net stress tensor gp I  if and only if g lp p . 
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 Hydraulic. The relative permeability of the gas phase is a continuous function 

(1 )rg lk f S   of lS  such that 0rgk   if and only if 1lS  . If 1lS  , then Darcy’s law for 

the gas phase yields g  0q . The mechanical dispersion tensor of the gas phase is a 

continuous function  g gfD' q  such that g  0D'  when g  0q . Finally, if g  0q  then 

Fick’s law for the water species and for the air species in the gas phase yield w

g  0i  and 

a

g  0i . Consequently, if g lp p  then 0gS   and w a

g g g   0q i i . In this case, all terms 

pertaining to the gas phase disappear from the balance of mass equations. 

 

The water retention curve determines whether the porous medium is saturated or unsaturated, 

but in the field equations some terms vanish if the porous medium is saturated. More precisely 

 

 Saturated porous medium. If g lp p , then the porous medium saturates ( 1lS  ) and the 

terms gq , w

gi  and a

gi  disappear from the field equations, which reduce to the field equations 

of a saturated porous medium (the liquid phase has the species water and the species air) 

with lp   I   being Terzaghi’s effective stress 

 

,
( ) ( ) + ( ) 0

s volw w w w

l l l l l l l ldiv
t t


      


  

 
i q  (2.52) 

,
( ) ( ) + ( ) 0

s vola a a a

l l l l l l l l lS div
t t


      


  

 
i q  (2.53) 

( )+ldiv p   0I g  (2.54) 

 

Using (2.11) and (2.13) in the two first equations, it follows that 0w

lf   and 0a

lf  . That 

is, there are no mass contributions from the non-existent gas phase. As explained earlier, 

the pressure of the gas phase gp  at a point of the porous medium and at a time instant is 

the pressure of a gas (made of species water and species air) which is in equilibrium (with 

respect to exchanges of species water and of species air) with the liquid phase (made of 

species water and species air) at the considered point of the porous medium and at the 

considered time instant. 

 

 Unsaturated porous medium. If g lp p , then the porous medium desaturates ( 1lS  ), 

the terms gq , w

gi  and a

gi  appear in the field equations, which are the field equations of an 

unsaturated porous medium (the liquid phase and the gas phase have the species water and 

the species air) with gp   I   being the net stress 

 

,
( + ) ( + )

+ ( ) 0

s volw w w w

l l l g g g l l l g g g

w w w w

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q
 

(2.55) 

,
( + ) ( + )

+ ( ) 0

s vola a a a

l l l g g g l l l g g g

a a a a

l l l l g g g g

S S S S
t t

div


        

   




 

   i q i q
 

(2.56) 

( )+gdiv p    0I g . (2.57) 
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3 1D Modelling 

 

By use of certain simplifying assumptions, it is possible to reduce the problem to a coupled 

system of two differential equations in two unknown functions of a geometric variable z  

defined on a 1D domain, representing the part of the EDZ in contact with the megapacker, 

and of time t . The boundary conditions at the end of this 1D domain close to the test section 

are derived from the protocols (time evolutions) of the volume injection rate of the liquid 

phase and of the volume injection rate of the gas phase. The boundary conditions at the end of 

this domain close to the liner are generalized conditions involving the mass rates of the liquid 

phase and of the gas phase and the values of the external pressures of the liquid phase and of 

the gas phase. The protocol of the megapacker pressure is transformed into a body term on the 

1D domain. The initial conditions for the unknown functions are derived from the assumed 

conditions of the test. This coupled system of equations is solved using the FEM. Once the 

two unknown functions of the geometric 1D variable and of time are known, all the field 

variables both on the Opalinus clay and on the EDZ are determined in closed form using those 

two unknown functions. 

 

3.1 Geometry and coordinate system 

 

Figure 3-1 below shows the assumed geometry of the portion of the EDZ and Opalinus clay 

surrounding the HG-A tunnel comprised between the two planes orthogonal to the tunnel axis 

that pass through each of the ends of the megapacker.  

 

reri

L

z

r

Opalinus clay

EDZ

Tunnel axis

 

Figure 3-1. Geometry and coordinate system around the HG-A tunnel. 

 

A cylindrical coordinate system ( , ,r z ) has been defined such that (1) its origin is at the 

intersection of the tunnel axis with the plane orthogonal to it that passes through the 
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megapacker end close to the test section; (2) the z  axis is parallel to the tunnel axis and is 

oriented towards the tunnel mouth; (3) the angle   is measured with respect to the horizontal. 

The origin of time has been set at 15.04.2006. 

 

In that figure, the definitions of the geometric parameters that will be used are also shown, 

namely: L  is the length of the megapacker ( 3.00L m ); ir  is the radius of the tunnel 

( 0.50ir m ); and er  is the radius of the interface between the EDZ and the Opalinus clay 

( 0.70er m ). The considered geometry is symmetric around the tunnel axis, hence the EDZ 

has a uniform thickness e ir r . 

 

3.2 Simplifying assumptions 

 

The considered simplifying assumptions are of mechanical and hydraulic nature. 

 

Mechanical. Both on the EDZ and on the Opalinus clay, it will be assumed that (1) there is 

axisymmetry about the tunnel axis ( z  axis); (2) there are no volume forces (gravity is 

neglected); and (3) slices z const  move independently and in plane strain. 

 

Hydraulic. Both on the EDZ and on the Opalinus clay, it will be assumed that (1) there is 

axisymmetry about the tunnel axis ( z  axis); and (2) there are no volume forces (gravity is 

neglected). Furthermore, on the EDZ, it will be assumed that (3)
EDZ

 the flows of the liquid 

phase and of the gas phase are parallel to the tunnel axis ( z  axis); and, on the Opalinus clay, 

it will be assumed that (3)
OPA

 there is no gas phase (saturated state), there is no flow of the 

liquid phase (undrained conditions) and there is no air in the liquid phase. 

 

3.3 Consequences of the simplifying assumptions 

 

Mechanical axisymmetry about the tunnel axis ( z  axis) requires that the displacement fields 

on the EDZ and on the Opalinus clay do not depend on  , that is 

 

( , , )EDZ EDZ

r ru r z tu e   ( i er r r  , 0 z L  ), 

( , , )OPA OPA

r ru r z tu e   ( er r , 0 z L  ). 
(3.1) 

 

Independent motion and in plane strain of slices z const  amounts to neglect the shear 

components of the deformation tensor field on the EDZ and on the Opalinus clay implied by 

the displacement fields on the EDZ and on the Opalinus clay, that is 

 

( , , )
( , , )

EDZ EDZ
EDZ r r

r r

u u r z t
r z t

r r
 


   


e e e e   ( i er r r  , 0 z L  ), 

( , , )
( , , )

OPA OPA
OPA r r

r r

u u r z t
r z t

r r
 


   


e e e e   ( er r , 0 z L  ). 

(3.2) 

 

Hydraulic axisymmetry about the tunnel axis ( z  axis) requires that, on the EDZ and on the 

Opalinus clay, the liquid phase pressure lp  does not depend on   and, on the EDZ, the gas 

phase pressure gp  does not depend on  . The assumption that, on the EDZ, the flow of the 

liquid phase lq  and the flow of the gas phase gq  are parallel to the tunnel axis, and Darcy’s 
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laws (2.18) and (2.19) imply that the liquid phase pressure lp  and the gas phase pressure gp  

do not depend on r (nor on  ). Summarizing,  

 

( , )EDZ EDZ

l lp p z t  

( , )EDZ EDZ

g gp p z t  

( , , )OPA OPA

l lp p r z t  

(3.3) 

 

Using this result and the expression of the retention curve (2.15), we conclude that on the 

EDZ lS  and gS  do not depend on r  nor on  . 

 

( , )EDZ EDZ

l lS S z t  

( , )EDZ EDZ

g gS S z t  
(3.4) 

 

Since, on the EDZ, the liquid phase pressure lp  and the gas phase pressure gp  do not depend 

on r  nor on  , the definition (2.40) of the effective pressure *p  shows that it does not 

depend on r  nor on  , 

 

* * ( , )EDZ EDZp p z t . (3.5) 

 

Therefore, on any slice z const  and any time t , we can use the results of Appendix A4 

showing the results of the integration of the balance of momentum for the porous medium, 

namely the expressions for the non-vanishing components of the displacement vector, strain 

tensor and total stress tensor on the EDZ 

 

( , )
( , , ) ( , )

EDZ
EDZ EDZ

r

B z t
u r z t A z t r

r
   

2

( , )
( , , ) ( , )

EDZ
EDZ EDZ

r

B z t
r z t A z t

r
    

2

( , )
( , , ) ( , )

EDZ
EDZ EDZ B z t

r z t A z t
r

    

2

( , )
( , , ) ( , ) *( , )

(1 )(1 2 ) (1 )

EDZ EDZ EDZ
EDZ EDZ

r EDZ EDZ EDZ

E E B z t
r z t A z t p z t

r


  

 
   

    
, 

2

( , )
( , , ) ( , ) *( , )

(1 )(1 2 ) (1 )

EDZ EDZ EDZ
EDZ EDZ

EDZ EDZ EDZ

E E B z t
r z t A z t p z t

r


  

 
   

    
, 

( , , ) [2 ( , )] *( , )
(1 )(1 2 )

EDZ
EDZ EDZ EDZ

z EDZ EDZ

E
r z t A z t p z t 

 


  

  
, 

(3.6) 

 

and the non-vanishing components of the displacement vector, strain tensor, total stress tensor 

and pore water pressure on the Opalius clay 
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( , )
( , , )

OPA
OPA

r

B z t
u r z t

r
 , 

( , )
( , , )

OPA
OPA

r

B z t
u r z t

r
 , 

2

( , )
( , , )

OPA
OPA

r

B z t
r z t

r
   , 

2

( , )
( , , )

OPA
OPA B z t

r z t
r

  , 

2

( , )
( , , )

(1 )

OPA OPA
OPA

r OPA

E B z t
r z t

r





  


, 

2

( , )
( , , )

(1 )

OPA OPA
OPA

OPA

E B z t
r z t

r





 


, 

( , , ) 0OPA

z r z t       and 

* ( , , ) 0OPAp r z t  . 

(3.7) 

 

where 

 

*( , ) ( , ) * ( , )EDZ EDZ EDZ EDZ

pA z t A z t A p z t      , 

*( , ) ( , ) * ( , )EDZ EDZ EDZ EDZ

pB z t B z t B p z t           and 

*( , ) ( , ) * ( , )OPA OPA OPA EDZ

pB z t B z t B p z t      , 

(3.8) 

 

Here ( , ) ( , ) ( ,0)z t z t z      is the variation with respect to its initial value of the total 

pressure applied to the tunnel wall at slice z  and time t  (in the HG-A test, it does not depend 

on z ) and the expressions for the 6 constants 
EDZA  , 

*

EDZ

pA
, 

EDZB  , 
*

EDZ

pB
, 

OPAB   and 
*

OPA

pB
 are 

given in Appendix A4 as functions of the elastic properties of the EDZ ( EDZE  and 
EDZ  ), the 

elastic properties of the Opalinus clay ( OPAE  and 
OPA  ) and of the geometry of the test ( ir  

and er ). 

 

From these relations, it follows that the volumetric deformation on the EDZ and the increment 

of the effective pressure (equal to the liquid phase pressure lp ) on the Opalinus clay do not 

depend on r  nor on  : 

 

*( , ) ( , , ) ( , , ) 2[ ( , ) * ( , )]EDZ EDZ EDZ EDZ EDZ EDZ

vol r pz t r z t r z t A z t A p z t            (3.9) 

* ( , ) ( , )OPA OPAp z t C z t    (3.10) 

 

Using the expression (2.20) for the relative permeability to the liquid phase, the expression 

(2.21) for the relative permeability of the gas phase, the expression (2.22) for the intrinsic 

permeability and results (3.3), (3.4) and (3.9), the expression (2.18) for Darcy’s law for the 

liquid phase and the expression (2.19) for Darcy’s law for the gas phase read 
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( ( , )) ( ( , ))
( , ) ( , )

EDZ EDZ EDZ EDZ EDZ
EDZ rl l vol l
l

l

k S z t k z t p
z t z t

z






 


zq e      and (3.11) 

( ( , )) ( ( , ))
( , ) ( , )

EDZ EDZ EDZ EDZ EDZ

rg g vol gEDZ

g

g

k S z t k z t p
z t z t

z






 


z

q e , (3.12) 

 

showing that, on the EDZ, the liquid phase flow lq  and the gas phase low gq  do not depend 

on r  nor on  . 

 

Since, on the EDZ, the liquid phase pressure and the gas phase pressure do not depend on r  

nor on  , all variables depending only on them will not depend on r  nor on  . In particular,   

 

( , )wEDZ wEDZ

l l z t  , 

( , )a EDZ a EDZ

l l z t  , 

( , )wEDZ wEDZ

g g z t  , 

( , )aEDZ aEDZ

g g z t       and 

( , )EDZ EDZ

g g z t  . 

(3.13) 

 

Since the volumetric deformation EDZ

vol  does not depend on r  nor on  ,  if the initial porosity 

0EDZ  does not depend on r  nor on  , from equation (2.48) it follows that the porosity EDZ  

does not depend on r  nor on  , 

 

( , )EDZ EDZ z t  . (3.14) 

 

Taking into account Darcy’s laws (3.11) and (3.12) and the results (3.13) and (3.14), Fick’s 

equations (2.24) to (2.31) read 

 

( , ) ( , )( ( , ) ( , ) | ( , ) |) ( , )
wEDZ

wEDZ EDZ EDZ EDZ w l EDZ l
l l l l l lz t z t z t S z t D d z t z t

z


 


  


zi q e , (3.15) 

( , ) ( , )( ( , ) ( , ) | ( , ) |) ( , )
aEDZ

aEDZ EDZ EDZ EDZ a l EDZ l
l l l l l lz t z t z t S z t D d z t z t

z


 


  


zi q e , (3.16) 

( , ) ( , )( ( , ) ( , ) | ( , ) |) ( , )

wEDZ

gwEDZ EDZ EDZ EDZ w l EDZ

g g g g g gz t z t z t S z t D d z t z t
z


 


  


zi q e , (3.17) 

( , ) ( , )( ( , ) ( , ) | ( , ) |) ( , )

a EDZ

ga EDZ EDZ EDZ EDZ a l EDZ

g g g g g gz t z t z t S z t D d z t z t
z


 


  


zi q e     and, (3.18) 

 

showing that, on the EDZ, the water flow 
w

li  and the air flow 
a

li  on the liquid phase and the 

water flow w

gi  and the air flow a

gi  on the gas phase are parallel to the tunnel axis ( z  axis) and 

do not depend on r  nor on  . 

 

3.4 Field equations, initial and boundary conditions 

 

Since the balance of momentum has already been integrated in terms of the pressure of the 

liquid phase and the pressure of the gas phase, the field equations reduce to the balance of 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 20 

mass for the species water and the balance of mass for the species air. We will use the results 

obtained from the simplifying assumptions in order to write the field equations, and we will 

address the initial and boundary conditions considered. 

 

 Field equations. Using the relations obtained from the simplifying assumption into the 

field equations (2.49) and (2.50), we get 

 

,
( + ) ( + )

0

s volw w w w

l l l g g g l l l g g g

w
w l wrl l l rl l

l l l l l l

l l

w
rg g rg gw l wl

g g g g g g

g g

S S S S
t t

k k p k k p
S D d

z z z z

k k p k k p
S D d

z z z z


        


   

 


   

 




 

      
    
      

     
            

 ( 0 z L  , 0t  ) 
(3.19) 

,
( + ) ( + )

0

s vola a a a

l l l g g g l l l g g g

a
a l arl l l rl l

l l l l l l

l l

a

rg g g rg ga l a

g g g g g g

g g

S S S S
t t

k k p k k p
S D d

z z z z

k k p k k p
S D d

z z z z


        


   

 


   

 




 

      
    
      

      
            

 ( 0 z L  , 0t  ) 
(3.20) 

 

Where, using the chain rule, all partial derivatives with respect to t  and z  are written in terms 

of the partial derivatives of  lp  and gp  with respect to t  and z . 

 

Therefore, equations (3.19) and (3.20) form a (coupled) system of two second order partial 

differential equations in the unknown fields ( , )lp z t  and ( , )gp z t . In order to single out the 

solution to the problem, we impose the following initial and boundary conditions. 

 

 Initial conditions. They are the prescription of the distributions of the pressures of the 

liquid and gas phases.  

 

0( ,0) ( ) ( )l lp z p z     ( 0 z L  ) 

0( ,0) ( ) ( )g gp z p z    ( 0 z L  )  
(3.21) 

 

Recall that, in the present approach, it is assumed that lp  and gp  do not depend on r  nor 

on  , so that their initial values can only depend on z . We will use 0( ) ( ) atm

lp z p  and 

0( ) ( ) atm

gp z p , where atmp  is the atmospheric pressure at the test site, so that, according 

to the water retention curve, the EDZ is initially saturated. 

 

Note that the closed form expressions (3.6) and (3.7) give the variations of the stress state 

both on the Opalinus clay (
OPA

r , 
OPA

 , 0OPA

z  and * 0OPAp  ) and on the EDZ 

(
EDZ

r ,
EDZ

  and 
EDZ

z ). Thus, in order to determine the stress state on the Opalinus 

clay or on the EDZ, we need to know the initial stress state both on the Opalinus clay 
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( 0( )OPA

r , 0( )OPA

 , 0( )OPA

z and 0( * )OPAp ) and on the EDZ ( 0( )EDZ

r , 0( )EDZ

  and 0( )EDZ

z ) 

such that they satisfy the balance of momentum on both the Opalinus clay and on the EDZ 

and that 0( * )OPAp  only depends on z . However, we will leave the initial stress states 

undetermined and will only compute variations from these unknown stress states. 

 

 Boundary conditions at the test section end. At 0z  , water and/or air are injected into 

the test section at rates that are functions of time, according to the input protocol and are 

given as volume rates (volume of water or air per unit time). After transforming them into 

mass rates (mass of water or gas per unit time) ( )wM t  and ( )aM t , the boundary conditions 

at 0z   state the conservation of the mass of water and air that are injected. 

 

2 2

0

2 2

0

( ) ( )

( )

w
w l wrl l l rl l

w e i l l l l l l

l l
z

w

rg g g rg gw l w

e i g g g g g g

g g
z

k k p k k p
M t r r S D d

z z z

k k p k k p
r r S D d

z z z


    

 


    

 





     
      

     

     
           

 

2 2

0

2 2

0

( ) ( )

( )

a
a l arl l l rl l

a e i l l l l l l

l l
z

a

rg g g rg ga l a

e i g g g g g g

g g
z

k k p k k p
M t r r S D d

z z z

k k p k k p
r r S D d

z z z


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 


    

 





     
      

     

     
           

 

(3.22) 

 

 Boundary conditions at the liner end. They are based on discrete forms of Darcy’s and 

Fick’s laws, namely 

 

    

 

( )

( )

w
w l wrl l l rl l

l l l l l l

l l
z L

w

rg g g rg gw l w

g g g g g g

g g
z L

w ext w ext w

l l l l l l l l l
z L

w ext w ext

g g g g g g g g

k k p k k p
S D d

z z z

k k p k k p
S D d

z z z

p p

p p


   

 


   

 

      

      







     
   

     

     
          

   

     w

g
z L

 (3.23) 

    

 

( )

( )

a
w l arl l l rl l

l l l l l l

l l
z L

a

rg g g rg gw l a

g g g g g g

g g
z L

a ext a ext a

l l l l l l l l l
z L

a ext a ext

g g g g g g g g

k k p k k p
S D d

z z z

k k p k k p
S D d

z z z

p p

p p


   

 


   

 

      

      







     
   

     

     
          

   

     a

g
z L

   (3.24) 
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where l , g , l  and g  are parameters, ext

lp  and ext

gp  are the prescribed values of 

pressures of the liquid and gas phases and ( )w ext

l , ( )a ext

l , ( )w ext

g  and ( )a ext

g  are the 

prescribed values of the mass fractions of water and dry air in the liquid and gas phases. 

Thus there are 10  parameters to be prescribed. 

 

In the present case, the last 6  parameters may be written in terms of 3  parameters: the 

atmospheric pressure at the test site atmp , the relative humidity of the gas phase at the test 

site atm

rh  and the mass concentration of dry air in the liquid phase at the test site ( )a ext

l . 

 
ext atm

gp p     (3.25) 

0( ) ( )
(273.15 )

w ext w extw
g g g r

M
p T h

R T
  


 (3.26) 

 0( ) ( )
(273.15 )

a ext ext w exta
g g g g r

M
p p T h

R T
   


 (3.27) 

ext atm

lp p  (3.28) 

( ) [1 ( ) ]w ext a ext

l l l l      (3.29) 

( ) ( )a ext a ext

l l l l     (3.30) 

 

Equations (3.25) and (3.28) state the assumption that the pressure of both the liquid and 

gas phases are the same as the atmospheric pressure at the test site. Equation (3.26) is the 

definition of relative humidity. Equation (3.27) follows from the expressions of w

gp , w

g  

and g  from appendix A1 and the definition of relative humidity. Finally, equations (3.29) 

and (3.30) follow from the definition of ( )a ext

l , the constitutive law l const   and the 

constraint 1a w

l l   . Consequently, the boundary conditions at z L  depend (besides 

l , g , l  and g ) on the three parameters atmp , 
ext

rh  and ( )a ext

l . 

 

3.5 Test input protocol 

 

The considered test input protocol consists of polygonal approximations to the records 

(measured by the appropriate test sensors) of (1) megapacker pressure (sensor M-

PAMegapacker); (2) liquid phase volume injection rate (sensor M-Flow); and (3) gas phase 

volume injection rate (sensor M-GasFlow). These evolutions are shown in the Figure 3-2, 

with the polygonal approximations to them assumed in the modelling of the test.  

 

The test input protocol applied to the test section end is stated as evolutions with time of the 

liquid phase volume injection rate ( )lQ t  (in ml min ) and gas phase volume injection rate 

( )gQ t  (in mln min ). However, in the followed approach the boundary conditions considered 

at the test section end are stated as water mass injection rate ( )wM t  (in kg s ) and air mass 

injection rate ( )aM t  (in kg s ), since they are naturally associated to the balance equation of 

water mass and to the balance equation of air mass, respectively. In order to convert the input 

protocol to the considered boundary conditions, we proceed as follows 
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Since it has been assumed that the liquid density ( )l T  does not depend neither on the liquid 

pressure nor on the amount of dissolved air, the water mass injection rate ( )wM t  (in kg s ) 

and  air mass injection rate ( )aM t  (in kg s ) read 

 
3

3

3

3

1 1 1
( ) ( ) ( ) (1 )

60 1000 1000

0,1
1 1 1

( )
60 1000 1000

(273.15 )

a

w l l l ext
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s min s m l ml
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MPa mmin s ln mln

R T K
K mol
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

     


  
 

 (3.31) 
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R T K
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

  
 

 (3.32) 

 

where ( )lQ t  (in ml min ) is the volume injection rate, ( )gQ t  (in mln min ) the gas volume 

injection rate, 
a

l ext  is the air mass fraction in the liquid phase at the injection point and w

g ext  

is the water mass fraction in the gas phase at the injection point, wM  and aM  are the molar 

mass of water and air and R is the constant of gases. 

 

We compute 
a

l ext  using Henry’s law at a gas pressure equal to the atmospheric pressure 

g ext atmp p  (the atmospheric pressure at the experiment site) 

 

a a
l ext atm

w

M
p

HM
  , (3.33) 

 

where H  is Henry’s constant. We w

g ext  compute using the relation 

 
w

w g extw

g ext w a

w g ext a g ext

M p

M p M p
 


, (3.34) 

 

where the vapour pressure w

g extp  is computed from the relative humidity rexth  using the 

psychrometric law and the partial pressure of dry air a

gextp  is computed from the gas pressure 

g ext atmp p  (the atmospheric pressure at the experiment site) and w

g extp  using Dalton’s law 

 

0( )w w

g ext rext g extp h p T      and     a w

gext gext g extp p p  , (3.35) 

 

where 0( )w

g extp T  is the water vapour pressure in equilibrium with a planar water surface at 

temperature extT . 
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Figure 3-2. Test input protocol and polygonal approximations: evolution of (1) megapacker 

pressure; (2) liquid phase volume injection rate; and (3) gas phase volume injection rate. 
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4 Numerical solution using the FEM 

 

In order to solve the coupled system of differential equations subject to the initial and 

boundary conditions presented in the previous paragraph, we will use the FEM with the 

Galerkin approach. In essence, this requires the following steps: 

 

(1)  determination of the weak form of the system of differential equations to solve; 

 

(2)  division of the spatial domain (spatial discretization) into a number of subdomains (finite 

elements), approximation of the unknown functions ( , )lp z t  and ( , )gp z t  using the values 

( )I

lp t  and ( )I

gp t  of the unknown functions at a number of spatial points Iz  (nodes) and 

an associated set of functions ( )Iw z  (shape functions) and replacement of the system of 

differential equations by a system of ordinary differential equations (nodal equations), 

with the nodal values of the unknown functions ( )I

lp t  and ( )I

gp t  as unknowns and time 

t  as the independent variable; 

 

 (3)  integration of the system of ordinary differential equations using a time marching scheme 

that divides the time domain (time discretization) in time subdomains 1[ , ]k kt t   (time 

intervals) and in each of them approximates the unknown functions ( )I

lp t  and ( )I

gp t  

using their values at the begin 
kt  and at the end 

1kt 
 of the time interval and replaces the 

system of ordinary differential equations by a system of algebraic equations; and 

 

(4)  in each time interval 1[ , ]k kt t  , calculation of the values 
1( )I k

lp t 
 and 1( )I k

gp t   at the end 

of the time interval in terms of the values ( )I k

lp t  and ( )I k

gp t  at the beginning of the time 

interval by solving the associated system of algebraic equations. 

 

4.1 Weak form of the problem 

 

In order to numerically solve the coupled system of partial differential equations with the 

initial and boundary conditions, we first find its weak form.   

 

4.1.1 Balance of water mass 

 

We multiply that equation by an arbitrary test function ( )wW z  and we integrate it on the 

spatial domain [0, ]L   

 

,

[0, ]

[0, ]

( ) ( + ) ( + )

( )

( )

s volw w w w

w l l l g g g l l l g g g
L

w
w l wrl l l rl l

w l l l l l l
L l l
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 
 

  

      
    

      

  
   

    





[0, ]

0
g g

L g

k p
dz

z

  
 

  


 (4.1) 
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Integrating by parts the second and third integrals, we get 
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(4.2) 

 

 

Using the boundary conditions, we get the weak form of the differential equation stating the 

balance of water mass. 

 

 

,

[0, ]

[0, ]

( ) ( + ) ( + )

( )

( )

s volw w w w

w l l l g g g l l l g g g
L

w
w l wrl l l rl l

w l l l l l l
L l l

w

rg g gw l

w g g g g

g

W z S S S S dz
t t

k k p k k pd
W z S D d dz

dz z z z

k k pd
W z S D d

dz z


        


   

 


 



 
 

  

     
            

   
        





    

    

[0, ]

2 2

( ) ( )

( ) ( )

( )
(0) 0

( )

rg gw

g g
L g

w ext w ext w

w l l l l l l l l l
z L

w ext w ext w

w g g g g g g g g g
z L

w
w

e i

k k p
dz

z z

W L p p

W L p p

M t
W

r r

 


      

      







 
 

  
 

   

   

 


  (4.3) 

 

 

4.1.2 Balance of air mass 

 

We multiply that equation by an arbitrary test function ( )aW z  and we integrate it on the 

spatial domain [0, ]L   
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 (4.4) 

 

Integrating by parts the second and third integrals, we get 
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(4.5) 

 

Using the boundary conditions, we get the weak form of the differential equation stating the 

balance of air mass. 
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A reformulation of these expressions that will be used in the subsequent numerical 

developments is shown in appendix A5. 
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4.2 Reduction to a system of ordinary differential equations 

 

We divide the domain [0, ]I L  in adjacent finite elements eI , such that e

e
I I  and we 

approximate the unknown functions ( , )lp z t  and ( , )gp z t  by using shape functions ( )Iw z  

( 1, ,I N ) such that ( )I J IJw z   ( , 1, ,I J N ), where Iz  is the co-ordinate of node I , 

according to 

 

( , ) ( ) ( )I I

l lI
p z t w z p t      and (4.7) 

( , ) ( ) ( )I I

g gI
p z t w z p t , (4.8) 

  

where ( ) ( , )I I

l lp t p z t  and ( ) ( , )I I

g gp t p z t . 

 

In order to carry out this spatial approximation, we have used linear 1D finite elements with 

two nodes and one integration point. Each finite element is a segment with one node located 

at each end of the segment, the integration point is located at the center of the segment and the 

shape functions are linear. The linear shape functions, their derivatives and some related 

integrals may be found in the appendix A6 

 

Following the Galerkin approach, we use each shape function ( )Iw z  ( 1, ,I N ) as the test 

functions ( )wW z  and ( )aW z . We get a system of 2N  ordinary differential equations in the 

2N  unknowns ( )I

lp t  and ( )I

lp t  ( 1, ,I N ) 
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The expression of this system of ordinary differential equations in terms of the auxiliary 

functions introduced when reformulating the equations defining the weak form of the problem 

is shown in the appendix A7. This system of ordinary differential equations may be written in 

the following compact form 

  

( ) ( ) ( , )
d

t
dt

 
X

C X K X X g X , (4.11) 

 

where ( )tX  is an unknown 2N  vector function of t  whose components are given by 
2 1( ) ( )I I

lX t p t   and 2 ( ) ( )I I

gX t p t  ( 1, ,I N ), ( )C X  and ( )K X  are 2 2N N  matrices 

depending on ( )tX  and ( , )tg X  is a 2N  vector depending on ( )tX  and t . 

 

Taking into account the definition of the shape functions ( )Iw z  ( 1, ,I N ), element 
1[ , ]I Iz z   (between nodes I  and 1I  ) contributes additively to the matrices ( )C X  and 

( )K X  and to the vector ( , )tg X . More precisely, if we denote the contributions from element 
1[ , ]I Iz z   to these matrices by 
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L I g K L

g w I l g

I l K L I g K L I l K L I g K L

a I l g a I l g a I l g a I l g

C p p

C p p C p p C p p C p p





   

 

, (4.12) 

1

, , , ,

, , , 1 , 1

, , , ,

, , , 1 , 1

1, 1, 1,[ , ]
, , , 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( ,
I I

I l K L I g K L I l K L I g K L

w I l g w I l g w I l g w I l g

I l K L I g K L I l K L I g K L

a I l g a I l g a I l g a I l g

I l K L I g K L I l Kz z
w I l g w I l g w I l

K p p K p p K p p K p p

K p p K p p K p p K p p

K p p K p p K p p


 

 

  



K
1,

, 1

1, 1, 1, 1,

, , , 1 , 1

) ( , )

( , ) ( , ) ( , ) ( , )

L I g K L

g w I l g

I l K L I g K L I l K L I g K L

a I l g a I l g a I l g a I l g

K p p

K p p K p p K p p K p p





   

 

   and (4.13) 
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1 1[ , ]

1

( , , )

( , , )

( , , )

( , , )

I I

I K L

w l g

I K L

a l g

I K Lz z
w l g

I K L

a l g

g p p t

g p p t

g p p t

g p p t

 



g , (4.14) 

 

where the expression of their elements in terms of the auxiliary functions introduced when 

reformulating the equations defining the weak form of the problem are shown in the appendix 

A8 and, due to the shape functions used, they have the following symmetries 

 
, , 1, 1,

, , 1 , , 1

, , 1, 1,

, , 1 , , 1

, , 1,

, , 1 ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( ,

I l K L I l K L I l K L I l K L

w I l g w I l g w I l g w I l g

I g K L I g K L I g K L I g K L

w I l g w I l g w I l g w I l g

I l K L I l K L I l K

a I l g a I l g a I l

C p p C p p C p p C p p

C p p C p p C p p C p p

C p p C p p C p

 

 

 

 





  

  

  1,

, 1

, , 1, 1,

, , 1 , , 1

) ( , )

( , ) ( , ) ( , ) ( , )

L I l K L

g a I l g

I g K L I g K L I g K L I g K L

a I l g a I l g a I l g a I l g

p C p p

C p p C p p C p p C p p





 

 



  

 (4.15) 

, , 1, 1,

, , 1 , , 1

, , 1, 1,

, , 1 , , 1

, , 1,

, , 1 ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )

I l K L I l K L I l K L I l K L

w I l g w I l g w I l g w I l g

I g K L I g K L I g K L I g K L

w I l g w I l g w I l g w I l g

I l K L I l K L I

a I l g a I l g a I

K p p K p p K p p K p p

K p p K p p K p p K p p

K p p K p p K

 

 

 

 





    

    

    1,

, 1

, , 1, 1,

, , 1 , , 1

( , ) ( , )

( , ) ( , ) ( , ) ( , )

l K L I l K L

l g a I l g

I g K L I g K L I g K L I g K L

a I l g a I l g a I l g a I l g

p p K p p

K p p K p p K p p K p p





 

 



    

  (4.16) 

1

1

( , , ) ( , , )

( , , ) ( , , )

I K L I K L

w l g w l g

I K L I K L

a l g a l g

g p p t g p p t

g p p t g p p t








 (4.17) 

 

then the elements ( , )L M  ( , 1, 2,3, 4L M  ) of the 4×4 matrices 1[ , ]I Iz z C  and 1[ , ]I Iz z K  are 

added to the elements (2( 1) , 2( 1) )I L I M     of the 2 2N N  matrices ( )C X  and ( )K X  

and the elements ( )L  ( 1,2,3,4L  ) of the 4 vector 1[ , ]I Iz z g  are added to the elements 

(2( 1) )I L   of the 2N  vector ( , )tg X . Moreover, due to the boundary conditions, node 1 

(corresponding to the test section end) contributes additively to the vector ( , )tg X  and node 

N  (corresponding to the liner end) contributes additively to the vector ( , )tg X  and to the 

matrix ( )K X . More precisely, if we denote the contributions from nodes 1 and N  to these 

matrices by 

 

1

1

1

( , , )

( , , )

K L

w l g

K Lz
a l g

g p p t

g p p t
g

, 

(4.18) 

( , , )

( , , )
N

N K L

w l g

N K Lz
a l g

g p p t

g p p t
g      and (4.19) 

, ,

, ,

, ,

, ,

( , ) ( , )

( , ) ( , )
N

N l K L N g K L

w N l g w N l g

N l K L N g K Lz
a N l g a N l g

K p p K p p

K p p K p p
K , (4.20) 

 

where the expression of their elements in terms of the auxiliary functions introduced when 

reformulating the equations defining the weak form of the problem are shown in the appendix 
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A8, then the elements ( , )L M  ( , 1, 2L M  ) of the 2×2 matrix Nz
K are added to the elements 

(2( 1) , 2( 1) )N L N M     of the 2 2N N  matrix ( )K X , the elements ( )L  ( 1, 2L  ) of the 

2 vector of the vector 1z
g  are added to the elements ( )L  of the 2N  vector ( , )tg X  and the 

elements ( )L  ( 1, 2L  ) of the 2 vector Nz
g  are added to the elements ( )L  (2( 1) )N L   of 

the 2N  vector ( , )tg X . As a result, the 2 2N N  matrices ( )C X  and ( )K X  are 4×4-block 

3-diagonal and, consequently, 7-diagonal. The 4×4 matrices 1[ , ]I Iz z C  and 1[ , ]I Iz z K  

( 1, ,I N ), the 2 vectors 1[ , ]I Iz z g   ( 1, ,I N ), the 2×2 matrix Nz
K  and the 2 vectors 1z

g  

and Nz
g  are detailed in the appendix A8. 

 

The elements of the element matrices  1[ , ]I Iz z C  and 1[ , ]I Iz z K  and of the element vector 1[ , ]I Iz z g , 

corresponding to element 1[ , ]I Iz z   are integrals over the 1[ , ]I Iz z  . These integrals have been 

computed numerically, using the following approximation 

 

1[ , ]

1 1 1 1
1

( , ), ( , ), ( , ), ( , ),

( ) , , , ,
2 2 2 2

I I

gl
l g

z z

I I I I I I I I
gI I l

l g

pp
f p z t p z t z t z t t dz

z z

ppz z z z z z z z
z z f p p t

z z



   


 
 

  

           
         

         


 (4.21) 

 

If we use the approximations ( , ) ( ) ( )I I

l lI
p z t w z p t  and ( , ) ( ) ( )I I

g gI
p z t w z p t , where 

( )Iw z  (1 I N  ) is defined in appendix A6 , we get 

 

1[ , ]

1 11 1
1

1 1

( , ), ( , ), ( , ), ( , ),

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) , , , ,

2 2

I I

gl
l g

z z

I I I II I I I
g g g gI I l l l l

I I I I

pp
f p z t p z t z t z t t dz

z z

p t p t p t p tp t p t p t p t
z z f t

z z z z



  


 

 
 

  

   
  

   


 (4.22) 

 

Therefore, the integration uses an integration point located at 1( ) 2I Iz z  , that is, at the 

middle of the element 1[ , ]I Iz z  ,. 

 

4.3 Integration of the system of ordinary differential equations 

 

We integrate this system of ordinary differential equations using a time marching scheme. We 

will consider a series of time instants  
kt  ( 0,1, 2,k  ) such that 

1k kt t   ( 0,1, 2,k  ) and 
0t  is the initial time (the procedure employed to determine these time instants will be 

explained later). Furthermore, on each time interval 
1k kt t t    ( 0,1, 2,k  ), we will 

approximate the vector function ( )tX  linearly with respect to time using ( )ktX  and 1( )kt 
X . 

 
1

1

1 1
( ) ( ) ( )

k k
k k

k k k k

t t t t
t t t

t t t t




 

 
 

 
X X X  (

1k kt t t   , 0,1, 2,k  ). (4.23) 
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Thus, on each time interval 1k kt t t    ( 0,1, 2,k  ), the time derivative of ( )tX  reads 

 
1

1

( ) ( )
( )

k k

k k

d t t
t

dt t t










X X X
   (

1k kt t t   , 0,1, 2,k  ). (4.24) 

 

With these assumptions, at each time t  ( 1k kt t t   , 0,1, 2,k  ), the system of ordinary 

differential equations transforms into a system of algebraic equations in the unknowns ( )ktX  

( 1,2,k  ), since 0( )tX  is known.  

 
1 1

1

1 1 1

1 1
1 1

1 1 1 1

1
1

1 1

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

k k k k
k k

k k k k k k

k k k k
k k k k

k k k k k k k k

k k
k k

k k k k

t t t t t t
t t

t t t t t t

t t t t t t t t
t t t t

t t t t t t t t

t t t t
t t

t t t t

 


  

 
 

   




 

    
  

    

     
    

     

  
 

 

X X
C X X

K X X X X

g X X
1, ( , 0,1,2, )k kt t t t k

 
   

 

. (4.25) 

 

On each time interval 
1k kt t t    ( 0,1, 2,k  ), we consider the change of independent 

variable 1( ) ( ) / ( )k k k kt t t t t     (
1k kt t t   ) whose inverse is 1( ) (1 )k k k k kt t t       

( 0 1k  ). Using the notation ( )k kt t    and ( ( ))k kt  X X  ( 0,1, 2,k  , 0 1k  ),  

we have 

 
1(1 )k k k k k     X X X  ( 0 1k  , 0,1, 2,k  ), (4.26) 

1

1

k k k

k k

d

dt t t

 








X X X
  ( 0 1k  , 0,1, 2,k  ). (4.27) 

 

where ( )( ( ))k kd dt d dt t  X X  denotes the time derivative of ( )tX  evaluated at ( )kt  . 

With this notation, at time k  ( 0 1k  ), the system of algebraic equations reads 

 

 
1

1
( ) ( ) , 0

k k
k k k k k

k k
t

t t

    


    




  



X X
C X K X X g X  ( 0 1k  , 0,1, 2,k  ).  (4.28) 

 

In general, it is not possible to find ( )ktX  ( 1,2,k  ) such that the functions (4.26) satisfy 

the system of algebraic equations (4.28) associated to time k  in the time interval 
1k kt t t    

( 0,1, 2,k  ) for all values of k  such that 0 1k  , because there are infinitely many 

such systems.   

 

A possibility that is often used is to require that the equality holds for a certain value 0 1   

of k  denoting a time in each time interval 
1k kt t t    ( 0,1, 2,k  ), that is, we consider the 

following series of systems of algebraic equations  

 

 
1

1
( ) ( ) , 0

k k
k k k k k

k k
t

t t

    


    




  



X X
C X K X X g X  ( 0,1, 2,k  ).  (4.29) 
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Note that the extreme values 0   and 1   correspond, respectively, to the explicit and 

implicit approaches. If the vector k
X  is known, we compute the vector 1k

X  by solving the 

k -th system of algebraic equations. Therefore, since the vector 0
X  is known from the initial 

conditions, we have to successively solve the above series of systems of algebraic equations. 

 

A somewhat more general approach is to consider the satisfaction of the series of systems of 

algebraic equations 

 
1

1
( ) ( ) ( , ) 0

k k
k k k k k

k k
t

t t

    


    




  



X X
C X K X X g X  ( 0,1, 2,k  ), (4.30) 

 

where 0 1    . Note that if    we recover the previous approach and if 0   the 

system of algebraic equations is linear in the unknowns 1k
X  

 
1

1
( ) ( ) ( , ) 0

k k
k k k k k

k k
t

t t

 


 




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

X X
C X K X X g X   ( 0,1, 2,k  ). (4.31) 

 

Therefore, the value   may be viewed as a measure of the non-linearity of the system of 

algebraic equations. If we introduce the definition 

 
1

1

1
( ) ( ) ( ) ( , )

k k
k k k k k k

k k
t

t t

    


     




  



X X
F X C X K X X g X  ( 0,1, 2,k  ), (4.32) 

 

then the series of systems of algebraic equations (4.30) reads 

 
1( ) 0k F X        ( 0,1, 2,k  ). (4.33) 

 

As before, if the vector k
X  is known, we compute the vector 1k

X  by solving the k -th 

system of algebraic equations. Therefore, since the vector 0
X  is known from the initial 

conditions, we have to successively solve the above series of systems of algebraic equations. 

 

4.4 Solution of the systems of algebraic equations 

 

In order to solve the system of algebraic equations 

 
1( ) 0k F X  (4.34) 

 

for a certain k  ( 0,1, 2,k  ), one possibility is to use the Newton-Raphson method, which is 

an iterative procedure, whereby an initial estimation of the solution is successively updated 

until a certain criterion of convergence is satisfied. However, we have used a modification of 

this method. We first describe the Newton-Raphson method and afterwards we describe the 

modified version that has been used. 
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4.4.1 Newton-Raphson method 

 

It is defined by the following algorithm 

 

(1) Initial estimation of the solution ( 1,0k
X ). Define an initial estimation of the solution. 

 

(2) New estimation of the solution (
1, 1, 1k i k i  X X ).  Knowing an estimation of the 

solution 1,k i
X  (either from the initial value if 0i   or from the previous estimation if 0i  ), 

a new estimation of the solution 1, 1k i 
X  is found by solving the following system of linear 

algebraic equations 

 
1,

1, 1 1, 1,

1

( )
( ) ( )

k i
k i k i k i

k


   




  



F X
X X F X

X
, (4.35) 

 

where 1, 1( )k i k  F X X  denotes the Jacobian matrix of the derivatives of the vector function 
1( )k

F X  with respect to the vector variable 1k
X  evaluated at 1 1,k k i X X . 

 

(3) Check of the current estimation of the solution. If the current estimation of the solution 

satisfies a certain convergence criterion, it is taken to be the solution of the system of 

algebraic equations and we are done, otherwise we go to step (2) to find a new estimation of 

the solution. 

 

4.4.2 Implemented solution algorithm 

 

The solution algorithm used is based on the Newton-Raphson method, whereby its three steps 

have been defined as follows. 

 

Step (1). In this step, an initial estimation of the solution must be made. We compute it as 

follows  

 
1,0k k X X     ( 0k  )     or (4.36) 

1
1,0 1

1
( )

k k
k k k k

k k

t t

t t


 




  


X X X X  ( 0k  ), (4.37) 

 

where k
X  and 1k

X  are the values computed previously when solving the systems of 

algebraic equations ( ) 0k F X  and 1( ) 0k F X , respectively. 

 

Step (2). In this step, the Jacobian matrix 1, 1( )k i k  F X X  must be computed, which in our 

case reads 

 

   

     

1,
, ,

1 1

, , ,1,
,

1

( ) 1

,

k i
k i k i

k k k

k i k i k i kk i k
k i

k k

t t

t

t t

 

   





  


 

 

   





 

 

  
  

   

C X K X

C X K X g XX X
X

X X X

F X

X
, (4.38) 

 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 35 

where , 1,(1 )k i k k i    X X X , ,( )k i C X X  and ,( )k i K X X  denote the partial 

derivatives of the matrix functions ( )C X  and ( )K X  with respect to the vector variable X  

evaluated at ,k iX X  and ,( , )k i kt   g X X  denotes the partial derivatives of the vector 

function ( , )tg X  with respect to the vector variable X  evaluated at ,k iX X   and kt t  . 

Note that if 0  , this reduces to 

 

   
1,

, ,

1 1

( ) 1k i
k i k i

k k kt t




 


 

 
C X K X

F X

X
, (4.39) 

 

which is independent of 1,k i
X . 

 

This matrix is quite involved and its computation is deemed to be quite time demanding. In 

order to overcome these problems, we approximate the Jacobian matrix by neglecting the 

derivatives of the nonlinear terms (we do not derive a term with respect to 1k
X  if it is 

multiplied by  ), so that the Jacobian matrix 1 1( )k k  F X X  that has been used reads 

 

   
1,

, ,

1 1

( ) 1k i
k i k i

k k kt t

  


 

 


 

 
C X K X

F X

X
, (4.40) 

 

which depends on 1,k i
X , because , 1,(1 )k i k k i    X X X . This matrix is 7-diagonal and, if 

0  , it is not symmetric. Therefore, the system of linear algebraic equations in the 

unknowns 1, 1k i 
X  to solve reads 

 

   , , 1, 1 1,

1

1,
, , , ,

1

1
( )

( ) ( ) ( , )

k i k i k i k i

k k

k i k
k i k i k i k i k

k k

t t

t
t t

 

    

    




    



 
   


   



C X K X X X

X X
C X K X X g X

, (4.41) 

 

where , 1,(1 )k i k k i   X X X . This system is solved by means of an algorithm for 

inversion of nonsymmetrical band matrices, based on triangularisation and backsubstitution. 

 

Step (3). In this step, the current estimation 1,k i
X  is accepted as a solution if all the 

following conditions are satisfied 

 
2 1 1, 2 1 1, 1

1, ,
max ( ) ( ) _ _I k i I k i

l
I N

X X tol p SOLV    


       and (4.42) 

2 1, 2 1, 1

1, ,
max ( ) ( ) _ _I k i I k i

g
I N

X X tol p SOLV  


  , (4.43) 

 

where, for 1, ,I N , 2 1 1,( )I k iX    and 2 1,( )I k iX   are the components 2 1I   and 2I  of the 

vector 1,k i
X  (the current estimations of 

1 1( ) ( , )I k I k

l lp t p z t   and 1 1( ) ( , )I k I k

g gp t p z t  ),  

2 1 1, 1( )I k iX     and 2 1, 1( )I k iX    are the corresponding values of the preceding estimation, 

_ _ltol p SOLV  is the tolerance for corrections of the liquid phase pressure lp  at the nodes 

and _ _gtol p SOLV  is the tolerance for corrections of the gas phase pressure gp  at the 

nodes. Furthermore, in order to prevent too many iterations or too large deviations from the 
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tolerances set for the liquid phase pressure lp  and for the gas phase pressure gp , in step (3) 

the process is aborted if at least one of the following conditions is satisfied 

 

_ _i i max SOLV      or (4.44) 
2 1, 2 1, 1

1, ,
max ( ) ( ) _ _I k i I k i

g
I N

X X tol p max  


       or (4.45) 

2 1, 2 1, 1

1, ,
max ( ) ( ) _ _I k i I k i

g
I N

X X tol p max  


  , (4.46) 

 

where _ _i max SOLV  is the maximum number of iterations, _ _ _ _l ltol p max tol p SOLV  

is the maximum tolerance for the liquid phase pressure lp  corrections at the nodes and 

_ _ _ _g gtol p max tol p SOLV  is the maximum tolerance for the gas phase  pressure 

gp corrections at the nodes. 

 

4.5 Time marching scheme 

 

Given a time interval [ , ]ini endt t , the distribution ( )initX  at the initial time init  of liquid phase 

pressures lp  at the nodes and gas phase pressures gp  at the nodes, the input history during 

this time interval (megapacker pressures ( )t , water mass injection rate ( )wM t  and air mass 

injection rate ( )aM t ), we want to compute the distribution ( )endtX  at the final time endt  of the 

liquid phase pressures lp  at the nodes and the gas phase pressures gp  at the nodes.  

 

During the integration of the system of differential equations over the time interval [ , ]ini endt t , 

this interval is divided into time subintervals 1[ , ]i it t   (
0

init t , 0,1, 2,i  ) of length 
1i i it t t   . Starting from the initial known solution 0( )tX , the solutions 1 2( ), ( ),t tX X  at 

times 1 2, ,t t   are successively computed by solving the systems of algebraic equations 

associated to the subintervals 0 1 1 2[ , ], [ , ],t t t t  as explained before. The time marching 

scheme used is as follows. 

 

(1) Initial time 
0t  and known solution 0( )tX . Set 

0

init t  and 
0( ) ( )init tX X . 

 

(2) Integration from time 
it  and known solution ( )itX . If 

i

endt t , then the desired 

solution is ( ) ( )i

endt tX X  and the integration over the time interval [ , ]ini endt t  is finished, 

otherwise compute a time increment 
it  (as explained below) and try to solve the 

corresponding system of algebraic equations. 

 

(3) Time and known solution update. If a solution of the system of algebraic equations has 

been found, then accept the time increment 
it  and update time 

1i i i it t t t    and known 

solution 1( ) ( )i it t X X , otherwise (the solver algorithm has been aborted) reject the time 

increment 
it  and keep time 

1i i it t t   and known solution 1( ) ( ) ( )i i it t t X X X . Go 

to step (2). 
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If the number of rejected time increments at a certain time it  from a known solution ( )itX  

reaches the limit value of 20, the integration over the time interval [ , ]ini endt t  is aborted. 

 

The time increments it  are computed according to the following rules 

 

(1) Initial time increment (
0t ). It is taken to be _ _ 0d t  

  

(2) New time increment (
1i it t    ). It is defined by 

 
1 min( , _ _ , )i i i

endt factor t d t max t t    , (4.47) 

 

where it  is the previous time increment, _ _ maxd t  is the maximum time increment, endt  is 

the final time and factor  is computed as follows: 

 

If the previous system of algebraic equations has been solved using _n iter  iterations, then 

 
1 4(4 _ )factor n iter . (4.48) 

 

This factor is bounded by 2  (corresponding to one iteration) and by 0.2 (to avoid too large 

time step reductions). 

 

If the previous system of algebraic equations could not be solved (the solver algorithm has 

been aborted), then 

 

1 2factor  . (4.49) 

 

Therefore, the time marching scheme used to integrate the system of differential equations 

over a time interval [ , ]ini endt t  has two parameters, namely the initial time increment _ _ 0d t  

and the maximum time increment _ _d t max . The limit of 20 consecutive rejected time 

increments means that it is not accepted to reduce the previous time increment by a factor of 
20 6(1 2) 10 . 
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5 Preliminary results 
 

On the first place, using results of a 2D axisymmetric model of the HG-A test using 

code_bright, it will be shown that they conform reasonably well to the simplifying 

assumptions underlying the 1D model. Afterwards, some preliminary results using the 1D 

model will be presented, including the evolution of the liquid phase pressure, the gas phase 

pressure, the effective fluid pressure and the evolution of the intrinsic permeability near the 

test section. 

 

5.1 Verification of the simplifying assumptions 

 

A 2D axisymmetric model for the HG-A test was made using code_bright. Figure 5-1 shows 

the displacement field, the principal strains field and the liquid phase flow field at 

900t day , during the water injection tests. The figures show a section near the test section 

by a half-plane whose boundary coincides with the tunnel axis. The rectangular area on the 

left corresponds to the test section gravel, the rectangular area on the right corresponds to the 

Opalinus clay, the rectangular area between the former corresponds to the EDZ. The part of 

the EDZ in contact with the megapacker (not shown) is about 1.50 m in length, that is, half 

the length of the megapacker. 

 

The displacement field is such that, on the part of the EDZ in front of the megapacker, is 

approximately radial, except for a small zone near the test section and. On the Opalinus clay, 

it is essentially radial. The principal strains field is such that, on the part of the EDZ in front 

of the megapacker, one principal direction is radially oriented and the principal strain parallel 

to the tunnel axis vanishes (by axisymmetry, one principal direction must be perpendicular to 

the tunnel axis), again except for a small zone near the test section. On the Opalinus clay 

strains nearly vanish. Consequently, except for a small zone near the megapacker ends, the 

mechanical simplifying assumptions are satisfied: both on the EDZ and on the Opalinus clay, 

displacements are radial and in plane strain. 

 

The liquid phase flow field is such that, on the part of the EDZ in front of the megapacker, is 

approximately parallel to the tunnel axis, except for a small zone near the test section. On the 

Opalinus clay, the liquid flow field vanishes. Consequently, except for a small zone near the 

megapacker ends, the hydraulic simplifying assumptions in saturated conditions are satisfied: 

on the EDZ the liquid phase flow is parallel to the tunnel axis and on the Opalinus clay the 

liquid phase flow vanishes. 

 

Certainly, the results shown are not a verification that the simplifying assumptions on which 

the 1D model is based hold in the real HG-A test conditions. However, they indicate that it is 

reasonable to use the 1D simplified model in order to make a first calibration of the model 

parameters for its use in a 2D axisymmetric model using code_bright.   
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Figure 5-1. 2D axisymmetric code_bright model: (1) displacement field at 900t day ; (2) 

principal strains field at 900t day ; and (3) liquid phase flow field at 900t day . 
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5.2 Predicted evolutions with time of some important variables 

 

The values used for the constitutive parameters both on the Opalinus clay and on the EDZ are 

summarized in the Table 5-1. The temperature has been assumed to be 20T C  . 

 

The initial ( 0t   is 15.04.2006) conditions at the EDZ  are 0.1lp MPa , 0.1gp MPa   and 

a uniform initial porosity 0 0.12EDZ  .  

 

The boundary conditions at the contact between the megapacker and the test section (at 

0.00z m ) are the polygonal approximations to the records of the sensor M-Flow (liquid 

phase volume injection rate) and of the sensor M-GasFlow (gas phase volume injection rate) 

that have been shown in Figure 3-2. In these preliminary calculations, the water exchanges 

performed prior to the gas injection tests in order to eliminate gas from the test section have 

not been taken into account. 

 

The boundary conditions at the contact between the megapacker end and the liner (at z L , 

3.00L m ) are 0.1lp MPa , 0.1gp MPa , 
51.61 10a

l
   and 21.48 10w

g
  , that 

results from the assumptions 0.1atmp MPa  and 100%rh   at the test site. 

 

The evolution of the pressures applied by the megapacker is the polygonal approximation to 

the record of the sensor PAMegapacker (megapacker pressure) shown in Figure 3-2.   

 

Table 5-1. Values used for the constitutive parameters. 

 

Elastic effective properties 
      

OPAE  4.0×10
3
 MPa OPA   0.30 – 

EDZE  0.8×10
3
 MPa EDZ   0.30 – 

      

Water retention curve 
      

EDZ  0.33 – 
0

EDZP  0.243 MPa 
      

Intrinsic permeability 
      

EDZ

matrixk  1.0×10
-17

 m
2 

   

0

EDZb  1.0×10
-7

 m EDZ

maxb  1.0×10
-5

 m 

EDZa  1.0×10
-3

 m 
0

EDZ  -2.5×10
-3

 – 
      

Relative permeabilities 
      

EDZ

l  0.33 –    

EDZ

gA  1.00 – EDZ

gn  3.00 – 

      

Diffusion coefficients 
      

EDZ

lD  1.4×10
-4

 m
2
/s EDZ

lQ  2.54×10
-2

 MPa·m
3
/mol 

EDZ

gD  5.9×10
-12

 m
2
/s·MPa·°K

–Q
g 

EDZ

gQ  2.3 – 
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Figure 5-2. 1D model: evolution of (1) liquid phase pressure and gas phase pressure (2) 

effective fluid pressure; and (3) intrinsic permeability. 
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The results shown in Figure 5-2 refer to a point located at the contact of the megapacker with 

the test section (at 0z  ). 

 

(1)  The predicted evolutions of the liquid phase pressure lp  and the gas phase pressure gp  

show that, at the considered point, the porous medium remains saturated until around 

day 1400. Afterwards, due to the gas injection tests, the porous medium desaturates. 

 

(2)  The comparison of the predicted evolution of the effective fluid pressure *p  compared 

with the measurements of the sensor M-PEFloor (located on the bottom of the test 

section) show a reasonable overall agreement, but the sensor shows a tendency of the 

effective fluid pressure to increase with time which the modelling is not able to 

reproduce.  

 

(3)  The predicted evolution of the intrinsic permeability k  shows variations of about one 

order of magnitude. These predicted large variations of the intrinsic permeability are 

very important in order to be able to model the HG-A. In fact, the pressure applied by 

the megapacker on the tunnel wall, tends to close the fractures at the EDZ induced by 

the tunnel excavation, thereby decreasing the intrinsic permeability. 

 

These results reproduce quite well a number of the features observed in the HG-A test. 

However, the observed general increasing trend of the fluid pressures is not captured by the 

model. This might be due to a swelling of the EDZ under the confinement provided by the 

megapacker that induces a decrease with time of the intrinsic permeability not taken into 

account by the model. 

 

 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 43 

6 Conclusions 

 

The HG-A test is located at the Mont Terri Underground Laboratory near Saint Ursanne (Jura, 

Switzerland). It consists of a subhorizontal tunnel of 1.00 in diameter and 13.00 m in length 

excavated in the ultra-low permeability Opalinus clay. The excavation of the tunnel induced 

an EDZ (Excavation Damaged Zone) around the tunnel. After the excavation, the last 4.00 m 

of the tunnel (test section) were backfilled with gravel, a large inflatable packer (megapacker) 

was installed along the next 3.00 m of the tunnel and a steel liner was installed along the 

remaining 6.00 m near the mouth of the tunnel in order to guarantee the tunnel stability. After 

inflating the megapacker, the test section was saturated with water and a series of water 

injection tests and gas injections tests, whereby water and gas were injected into the test 

section at varying megapacker pressures, thereby forcing the water and the gas to backflow 

along the EDZ. 

 

In order to model the flow of liquid and gas through the EDZ, a two track approach has been 

followed. On the one hand, a 2D axisymmetric numerical model using code_bright (a finite 

element program developed at the Geotechnical Engineering Department of the UPC) has 

been prepared. On the other hand, a 1D analytical-numerical model has been developed, as 

explained in this report, and implemented in an Excel spreadsheet. Both models have 

essentially the same balance laws, equilibrium restrictions and constitutive relations. They 

differ in the additional simplifying assumptions assumed in the 1D model and in their 

numerical solution. The preliminary results obtained using the 1D model are quite similar to 

those obtained using the 2D axisymmetric model, thereby allowing to use the 1D model to 

calibrate the model parameters for the 2D axisymmetric model. 

 

The preliminary results obtained using the 1D model reproduce quite well a number of the 

observed features of the HG-A test. In this regard, the consideration of variations of the 

intrinsic permeability in the EDZ induced by volumetric deformations is very important. 

However, the observed trend of the fluid pressures to increase with time is not reproduced by 

the model. A possible explanation is that a swelling of the EDZ under the confinement 

provided by the megapacker would induce a decrease of the intrinsic permeability, thereby 

leading to an increase of the fluid pressures. As this swelling mechanism is not included in the 

model, this would explain the discrepancies between the predicted and the observed evolution 

of the fluid pressures. 
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A1. Some functions and their derivatives with respect to lp  and gp  

 

It will be convenient to define the real functions ( )F s  and 0( , )G s P  ( 0 0P   and 0 1  ) by 

 

( ) exp
(273.15 ) ( )

w

l

sM
F s

R T T

 
  

 
      0 ( )F s  

 

1

1

0 0

1 if 0
( , )

1 if 0

s
s

G s P P

s









 
          

 
 

     0 ( ) 1G s   

 

These functions are smooth (they and their derivatives of all orders are continuous) and have 

the property that their derivatives may be written using the original functions 

 

( ) ( )
(273.15 ) ( )

w

l

M
F s F s

R T T
  


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s
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  
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0
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s P
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A1.1. Selected functions of lp  and gp  

 

 Partial water and air pressures 

 

From the psychrometric law (2.8), the ideal gas law for dry air (2.37), the constant liquid 

density l const   (2.33) and Dalton’s law (2.36), we get  

 

0

( )
( , ) ( )exp

(273.15 ) ( )

g l ww w

g l g g

l

p p M
p p p p T

R T T

  
  

 
     and 

0

( )
( , ) ( )exp

(273.15 ) ( )

g l wa w

g l g g g

l

p p M
p p p p p T

R T T

  
   

 
. 

 

Using the definition of ( )F s , we get 

 

0( , ) ( ) ( )w w

g l g g g lp p p p T F p p   

0( , ) ( ) ( )a w

g l g g g g lp p p p p T F p p    

 

where, in order to simplify the notation, the dependence on the constant T  has been omitted. 

 

 Mass fractions in the liquid phase 

 

Using Henry’s law (2.9), the ideal gas law for dry air (2.37), the second of these relations and 

the constraint 1a w

l l   , we get 

 

( , ) ( , )a aa
l l g g l g

w

M
p p p p p

HM
       and 

( , ) 1 ( , )w aa
l l g g l g

w

M
p p p p p

HM
   . 

 

Using the expressions for the functions ( , )w

g l gp p p  and ( , )a

g l gp p p , we get 

 

0( , ) [ ( ) ( )]a wa
l l g g g g l

w

M
p p p p T F p p

HM
     

0( , ) 1 [ ( ) ( )]w wa
l l g g g g l

w

M
p p p p T F p p

HM
      

 

 Mass fractions in the gas phase 

 

From the ideal gas law for dry air (2.37), the ideal gas law for water vapour (2.38) and the 

constraint 1a w

g g   , we get 

 

( , )
( , )

( , ) ( , )

w

w g l gw

g l g w a

w g l g a g l g

M p p p
p p

M p p p M p p p
 


     and 
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( , )
( , )

( , ) ( , )

a

a g l ga

g l g w a

w g l g a g l g

M p p p
p p

M p p p M p p p
 


. 

 

Using the expressions for the functions ( , )w

g l gp p p  and ( , )a

g l gp p p , we get 

 
1

0

( , ) 1
( ) ( )

gw a a
g l g w

w w g g l

pM M
p p

M M p T F p p




 
   
  

 

1

0

( , ) 1 1
( ) ( )

ga a a
g l g w

w w g g l

pM M
p p

M M p T F p p




 
    

  

 

 

 Density of the gas phase 

 

Using in these relations Dalton’s law (2.36), the ideal gas law for dry air (2.37), the ideal gas 

law for water vapour (2.38), we get 

 

( , ) ( , )
( , )

(273.15 )

w a

w g l g a g l g

g l g

M p p p M p p p
p p

R T






 

 

Using the expressions for the functions ( , )w

g l gp p p  and ( , )a

g l gp p p , we get 

 

0( ) ( ) ( )
( , )

(273.15 )

w

a g w a g g l

g l g

M p M M p T F p p
p p

R T


  



 

 

 Effective fluid pressure 

 

According to equation (2.40), the effective fluid pressure reads  

 

*( , ) max( , )l g l gp p p p p  

 

 Volumetric deformation 

 

According to equation (3.9), the volumetric deformation reads 

 

0 * 0( , ) 2[ ( ) ( * * )]EDZ EDZ

vol l g pp p A A p p        

 

Using the expression for the function *( , )l gp p p , we get 

 

0 * 0( , ) 2[ ( ) (max( , ) * )]EDZ EDZ

vol l g p l gp p A A p p p        

 

where, 0  is the constant initial megapacker pressure,  0*p  is the constant initial effective 

fluid pressure and, in order to simplify the notation, the dependence on the megapacker 

pressure   has not been explicitly indicated.  
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 Intrinsic permeability 

 

According to equations (2.22) and (2.23), the intrinsic permeability reads 

 

 

 

 

3

0 0

3

0 0 0 0 0

3

0 0

1
( , )

12

1
( , ) ( ) ( , ) ( ) /

12

1
( ) / ( , )

12

matrix vol l g vol

l g matrix vol vol vol vol l g vol max

matrix max vol max vol l g

k b p p
a

k p p k b a p p b b a
a

k b b b a p p
a

 

    

 


 




       



   


 

 

where, in order to simplify the notation, the dependence on the megapacker pressure   

coming from vol  has not been explicitly indicated.  

 

 Parameter in van Genuchten’s water retention curve 

 

According to equations (2.16) and (2.17), the parameter 0P  in van Genuchten’s water 

retention curve reads 

 

30 0( , )
( , )

matrix
l g matrix

l g

k
P p p P

k p p
  

 

where, in order to simplify the notation, the dependence on the megapacker pressure   

coming from k  has not been explicitly indicated.  

 

 Degree of saturation of the liquid and gas phases 

 

According to equation (2.15) and the constraint 1l gS S  , we get 

 

1

1

0

1
( , )

1

g l

g l

l l g

g l

p p
p p

S p p P

p p









 
          

 
 

  

 

1

1

0

1 1
( , )

0

g l

g l

g l g

g l

p p
p p

S p p P

p p









  
            

 
 

. 
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Or, using the definition of 0( , )G s P , we get 

 

0( , ) ( , )l l g g lS p p G p p P   

0( , ) 1 ( , )g l g g lS p p G p p P    

 

where, in order to simplify the notation, the dependence on the megapacker pressure   

coming from 0P  has not been explicitly indicated.  
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A1.2. First order derivatives of the selected functions with respect to lp  and gp  

 

 Partial water and air pressures 

 

0 ( )
( , ) ( )

( ) (273.15 )

ww

gg w
l g g l

l l

p Tp M
p p F p p

p T R T


 

 
 

0 ( )
( , ) ( )

( ) (273.15 )

ww

gg w
l g g l

g l

p Tp M
p p F p p

p T R T


  

 
 

 

0 ( )
( , ) ( )

( ) (273.15 )

wa

gg w
l g g l

l l

p Tp M
p p F p p

p T R T


  

 
 

0 ( )
( , ) 1 ( )

( ) (273.15 )

wa

gg w
l g g l

g l

p Tp M
p p F p p

p T R T


  

 
 

 

 Mass fractions in the liquid phase 

 

0 ( )
( , ) ( )

( ) (273.15 )

wa
gl a w

l g g l

l w l

p TM M
p p F p p

p HM T R T





 
      

 

0 ( )
( , ) 1 ( )

( ) (273.15 )

wa
gl a w

l g g l

g w l

p TM M
p p F p p

p HM T R T





 
      

 

 

0( )
( , ) ( )

( ) (273.15 )

ww
gl a w

l g g l

l w l

p TM M
p p F p p

p HM T R T





 
     

 

0 ( )
( , ) 1 ( )

( ) (273.15 )

ww
gl a w

l g g l

g w l

p TM M
p p F p p

p HM T R T





 
       

 

 

 Mass fractions of the gas phase 

 
2

0 0

1
( , ) 1

( ) ( ) ( ) ( ) (273.15 ) ( )

w

g g w ga a a
l g w w

l w w g g l w g g l l

p M pM M M
p p

p M M p T F p p M p T F p p R T T







   
           

2

0 0

1
( , ) 1 1

( ) ( ) ( ) ( ) (273.15 ) ( )

w

g g w ga a a
l g w w

g w w g g l w g g l l

p M pM M M
p p

p M M p T F p p M p T F p p R T T







   
             

 
2

0 0

1
( , ) 1

( ) ( ) ( ) ( ) (273.15 ) ( )

a

g g w ga a a
l g w w

l w w g g l g g l l

p M pM M M
p p

p M M p T F p p p T F p p R T T







   
            

2

0 0

1
( , ) 1 1

( ) ( ) ( ) ( ) (273.15 ) ( )

a

g g w ga a a
l g w w

g w w g g l w g g l l

p M pM M M
p p

p M M p T F p p M p T F p p R T T







   
            
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 Gas phase density 

 

( , )
(273.15 ) (273.15 )

w a

g g gw a
l g

l l l

p pM M
p p

p R T p R T p

  
 

    
 

( , )
(273.15 ) (273.15 )

w a

g g gw a
l g

g g g

p pM M
p p

p R T p R T p

  
 

    
 

 

Using the expressions for w

g lp p  ,  a

g lp p  , w

g gp p   and a

g gp p  , we get 

 
2

0( )
( , ) ( ) 1

( ) (273.15 )

w

gg w a
l g g l

l l w

p T M M
p p F p p

p T R T M





   
    
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2

0( )
( , ) ( ) 1

(273.15 ) ( ) (273.15 )

w

gg a w a
l g g l

g l w

p TM M M
p p F p p

p R T T R T M





   
     

     
 

 

 Effective fluid pressure 

 

1*
( , )

0

l g

l g

l gl

p pp
p p

p pp


 

 
 

0*
( , )

1

l g

l g

l gg

p pp
p p

p pp


 

 
 

 

Note that if l gp p  these derivatives are not defined. 

 

 Volumetric deformation 

 

*

*
( , ) 2 EDZvol

l g p

l l

p
p p A

p p




 


 
 

*

*
( , ) 2 EDZvol

l g p

g g

p
p p A

p p




 


 
 

 

Using the expressions for * lp p   and * gp p  , we get 

 

*2
( , )

0

EDZ

p l gvol
l g

l gl

A p p
p p

p pp

 
  

 
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*

0
( , )
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l gvol
EDZl g

p l gg

p p
p p

A p pp






 

 
 

 

Note that if l gp p  these derivatives are not defined. 

 

 

 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 53 

 Intrinsic permeability 

 

 

0
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0 0 0 0 0

0 0

0
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0 ( ) /

vol vol

vol vol vol vol vol vol max
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
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
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Since vol  depends on lp  and gp , application of the chain rule yields 

 

( , ) vol
l g

l vol l

k dk
p p

p d p







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( , ) vol
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k dk
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





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Note that if l gp p  these derivatives are not defined. 

 

 Parameter in van Genuchten’s water retention curve 

 

0 3
0 4

1
( )

3

matrix
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dP k
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dk k
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Since k  depends on vol  and vol  depends on lp  and gp , application of the chain rule yields 
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Using the expressions of  ( , )vol l g lp p p   and ( , )vol l g gp p p  , we get  
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Note that if l gp p  these derivatives are not defined. 

 

 

 

 

 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 54 

 Degree of saturation of the liquid and gas phases 

 

Since lS  and gS  depend on lp  and gp  via the function 0( , )G s P , where g ls p p   and 

0 0 ( , )l gP P p p , application of the chain rule yields 
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Using the expressions of 0( , )G s P s   and 0 0( , )G s P P   in terms of 0( , )G s P , we get 
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Using the expressions of 0 ( , )l g lP p p p   and 0 ( , )l g gP p p p  , we get 
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Finally, using relation 1l gS S  , we get 

 

 1 1

0 0

0

1
( , ) 1 ( , ) if

1( , )

0 if

g lg

l g

l

g l

G s P G s P p pS
Pp p

p
p p


 



  
     

   
  

 

 1 10
* 0 02

0 0

1
2 ( , ) 1 ( , ) if

1( , )

0 if

EDZ

p g lg

voll g

g

g l

dPs dk
A G s P G s P p pS

P dk d Pp p
p

p p


 

 


  
      

   
  

 

 

Note that if l gp p  these derivatives are not defined. 
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A2. Isotropic Linear Elasticity in Plain Strain and Axisymmetry 

 

Plane strain and axisymmetry of the problem dictate that 

 

(1) The only non-vanishing component of the displacement vector field is ru , the only non-

vanishing components of the strain tensor field are r  and   and the only non-vanishing 

components of the stress tensor field are r ,   and z . These non-vanishing components 

are a function only of r .  

 

(2) The strain tensor is computed from the displacement vector according to 

 

r
r

du

dr
       and     ru

r
  . 

 

(3) The increment with respect to the initial state of the stress tensor is related to the strain 

tensor by Hooke’s law,  

 

1
( )r r z

E
            

1
( )r z

E
              

1
( )z r z

E
            , 

 

where E  is Young’s modulus and   is Poisson’s ratio. These linear relations between r , 

 , z  and r ,  , z  may be inverted if and only if its determinant does not vanish 

 

3 2 2

3 3

1 1
(2 3 1) (2 1)( 1) 0

E E
   

 
      . 

 

The case 1 2   corresponds to an infinite bulk modulus [3(1 2 )]K E    (material 

incompressibility) and the case 1    corresponds to an infinite shear modulus 

[2(1 )]G E   . 

 

(4) The balance of momentum in the absence of body forces reads 

 

0rrd

dr r

  
  . 

 

Two possibilities arise, namely, the material is compressible ( 1 2  ) and the material is 

incompressible ( 1 2  ). 
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A2.1. Compressible Material ( 1 1 2   ) 

 

In this case, it is possible to invert Hooke’s law. 

 

[(1 ) ]
(1 )(1 2 )

r r z

E
    

 
    

 
 

[ (1 ) ]
(1 )(1 2 )

r z

E
     

 
    

 
 

[ (1 ) ]
(1 )(1 2 )

z r z

E
    

 
    

 
 

 

Using these relations, the expressions of the non-vanishing components of the strain tensor 

and the plane strain condition 0z  , we get 

 
2

2 2

( )
(1 ) (1 )

(1 )(1 2 ) (1 )(1 2 )

r r r r
r

dd d d u duE E
u

dr dr dr dr r dr r

   
  

   

   
              

 

 

( ) [(1 2 )( )] (1 2 ) (1 2 )
(1 )(1 2 ) (1 )(1 2 )

r r
r r

du uE E

dr r
       

   

 
              

. 

 

Substituting them in the balance of momentum, we get 

 
0 02 0

2 2

(1 ) 1

(1 )(1 2 )

rr r r rd u du u dE

dr r dr r dr r

 

 

  
    

   
 

 

And, since the initial stress state is in equilibrium and 0E  , we get the equation 

 
2

2

2
0r r

r

d u du
r r u

dr dr
   , 

 

whose general solution is 

 

( )r

B
u r Ar

r
  , 

 

where A  and B  are constants. Therefore, the non-vanishing components of the strain tensor 

read 

 

2
( )r

B
r A

r
        and 

2
( )

B
r A

r
   , 

 

and the non-vanishing components of the increment of the stress tensor read 
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2
( ) (1 2 )

(1 )(1 2 )
r

E B
r A

r
 

 

 
       

, 

2
( ) (1 2 )

(1 )(1 2 )

E B
r A

r
 

 

 
       

     and 

 ( ) 2
(1 )(1 2 )

z

E
r A 

 
 

 
. 

 

Therefore, for 1 1 2   , the non-vanishing components of the displacement vector, the 

strain tensor and the stress tensor are  

 

( )r

B
u r Ar

r
  , 

2
( )r

B
r A

r
    

2
( )

B
r A

r
    

0

2
( ) ( )

(1 )(1 2 ) (1 )
r r

E E B
r A r

r
 

  
  

  
, 

0

2
( ) ( )

(1 )(1 2 ) (1 )

E E B
r A r

r
  

  
  

  
     and 

  0( ) 2 ( )
(1 )(1 2 )

z z

E
r A r  

 
 

 
, 

 

where A  and B  are constants. Note that the volumetric deformation vol r z       does 

not depend on r  

 

( ) 2vol r A  . 

 

A2.2. Incompressible Material ( 1 2  ) 

 

Hooke’s law with 1 2   reads 

 

1
[2 )]

2
r r z

E
        

1
[ 2 )]

2
r z

E
          

1
[ 2 )]

2
z r z

E
         

 

Adding these equations, we get the incompressibility condition 

 

0r z      
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Using the plane strain condition 0z   and the expressions of the non-vanishing components 

of the strain tensor, we get the equation 

 

0r rdu u

dr r
  , 

 

whose general solution is 

 

( )r

B
u r

r
 , 

 

where B  is a constant. Therefore, the non-vanishing components of the strain tensor read 

 

2
( )r

B
r

r
    

2
( )

B
r

r
   

 

Since in this case Hooke’s law is not invertible, we will use Hooke’s law and the balance of 

momentum in order to determine the non-vanishing components of the stress tensor. 

 

Using the plane strain condition 0z   and the third equation in Hooke’s law, we have 

 

1
( )

2
z r         

 

Substituting this expression in the first equation in Hooke’s law, we get 

 

3
( )

4
r r

E
     , 

 

which, taking into account the expression of r  derived above, yields 

 

2

4

3
r

EB

r
      

 

Using this result in the balance of momentum, we have that 

 

 
0 0 0 00 0

2

4
0

3

r r rr r r rd d d dEB

dr r dr r dr r dr r

                 
          

   
 

 

And, since the initial stress state is in equilibrium, we get the equation 

 

2

4
0

3

rd EB

dr r


  , 

 

whose general solution is 
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2

2
( )

3
r

EB
r C

r
    , 

 

where C  is a constant. Using the relationship between r  and   found above, we get 

 

2 2

4 2
( ) ( )

3 3
r

EB EB
r r C

r r
       . 

 

Finally, using the expression of r  in terms of  r  and   found above, we get 

 

1
( )

2
z r C        . 

 

Therefore, the non-vanishing components of the increment of the stress tensor read 

 

2

2
( )

3
r

EB
r C

r
    , 

2

2
( )

3

EB
r C

r
   , 

( )z r C  . 

 

Therefore, for 1 2  , the non-vanishing components of the displacement vector, the strain 

tensor and the stress tensor are  

 

( )r

B
u r

r
 , 

2
( )r

B
r

r
    

2
( )

B
r

r
   

0

2
( ) ( )

(1 )
r r

E B
r C r

r
 


   


, 

0

2
( ) ( )

(1 )

E B
r C r

r
  


  


     and 

0( ) ( )z zr C r   , 

 

where B  and C  are constants. Note that the dependence on the parameters E  and   is via 

the shear modulus [2(1 )]G E   . 

 

It is worth mentioning that, in general, the equations giving the displacement, strain and stress 

fields for 1 2   are not the limit as 1 2   of the corresponding ones for 1 1 2   . 
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A3. Isotropic Linear Poroelasticity in Plain Strain and Axisymmetry 

 

We will consider a porous material made of a solid skeleton, a liquid phase and a gas phase, 

whereby the liquid phase and the gas phase fill the pores of the solid skeleton. For this porous 

material, a generalized form of Terzaghi’s effective stress principle will be accepted, whereby 

the effective stress tensor ij   will be defined by the relation 

 

*ij ij ijp      with * max( , )l gp p p , 

 

where ij  is the (total) stress tensor of the porous material (solid skeleton, liquid phase and 

gas phase) , lp  is the liquid phase pressure and lp  is the gas phase pressure. We will refer to 

*p  as the (effective) pore pressure. 

 

A3.1. Drained conditions with constant *p  

 

For an isotropic linear poroelastic material, in plane strain and axisymmetric conditions 

Hooke’s law reads 

 

1
( )r r z

E
              


 

1
( )r z

E
                


 

1
( )z r z

E
               


, 

 

where E  is the effective Young’s modulus and   is the effective Poisson’s ratio. We will 

assume that 1 1 2   , so that Hooke’s law is invertible. 

 

From the definition of Terzaghi’s effective stress, *r r p     , *p       and 

*z z p     . Using these relations, Hooke’s law reads 

 

1 1 2
( ) *r r z p

E E



     


        

 
 

1 1 2
( ) *r z p

E E
 


     


         

 
 

1 1 2
( ) *z r z p

E E



     


         

 
. 

 

Thus, in order to determine the non-vanishing components of the strain tensor r ,   and z , 

the variations of both the pore pressure *p  and the non-vanishing components of the 

effective stress tensor r  ,    and z   are needed. 

 

If *p  is constant, then div div    and we can replace the total stress tensor   by the 

effective stress tensor *p  I    in the balance of momentum equation. Therefore, 

assuming 1 1 2   , we can use the results of the previous appendix to find the non-
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vanishing components of the displacement vector, the strain tensor and the effective stress 

tensor  

 

( )r

B
u r Ar

r
  , 

2
( )r

B
r A

r
    

2
( )

B
r A

r
    

0

2
( ) ( )

(1 )(1 2 ) (1 )
r r

E E B
r A r

r
 

  

 
   

    
, 

0

2
( ) ( )

(1 )(1 2 ) (1 )

E E B
r A r

r
  

  

 
   

    
     and 

  0( ) 2 ( )
(1 )(1 2 )

z z

E
r A r  

 


  

  
, 

 

where A  and B  are constants. It is important to note that the volumetric deformation 

vol r z       does not depend on r  

 

( ) 2vol r A  . 

 

A3.2. Undrained conditions 

 

If the pores of the solid skeleton are filled only with the liquid phase (saturated conditions) 

and this liquid phase cannot flow, then we are in undrained conditions. If we assume that both 

the solid skeleton particles and the liquid phase are incompressible, then the poroelastic 

material cannot have volumetric deformations. Consequently, 0vol r z        and, 

Hooke’s law requires that 0r z          which, using the definition of the effective 

stress ( *r r p     , *p       and *z z p     ), is equivalent to 

 

1
* ( )

3
r zp           . 

 

Using this relation in Hooke’s law, we get 

 

1
( )r r u u z

uE
            

1
( )u r u z

uE
              

1
( )u r u z

uE
             , 

 

where uE  is the undrained Young’s modulus and u  is the undrained Poisson’s ratio, and are 

given in terms of E  and   by the relations 
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3

2(1 )
u

E
E







     and     

1

2
u  . 

 

Thus, in undrained conditions, in order to determine the non-vanishing components of the 

strain tensor r ,   and z , only the variations of the total stress tensor r ,   and z  are 

needed. The variation of the effective pressure *p  is given above. Note that * lp p , since in 

saturated conditions l gp p .  

 

Since 1 2u   , we can use the results of the previous appendix to find the non-vanishing 

components of the displacement vector, the strain tensor, the total stress tensor and the 

effective pressure  

 

( )r

B
u r

r
 , 

2
( )r

B
r

r
    

2
( )

B
r

r
   

0

2
( ) ( )

(1 )
r r

E B
r C r

r
 




   


, 

0

2
( ) ( )

(1 )

E B
r C r

r
  




  


     and 

0( ) ( )z zr C r   , 

0*( ) * ( )p r C p r    

 

where B  and C  are constants. 
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A4. 1D Modelling of the HG-A Test 

 

Due to its very low permeability, it will be assumed that the Opalinus clay has an undrained 

behaviour. Since the EDZ has a much larger permeability, its contact with both the Opalinus 

clay and the megapacker is impervious. 

 

Because of the assumed axisymmetry, the zone occupied by the EDZ is i er r r   and the 

zone occupied by the Opalinus clay is 2r r . We assume that the effective parameters of the 

EDZ  satisfy 0 EDZE  and 1 1 2EDZ    , whereas the effective parameters of the Opalinus 

clay  satisfy 0 OPAE  and  1 1 2OPA    . 

 

The assumed simplifying assumptions imply each slice z const  moves independently and in 

plane strain and that *p  does not depend on r . Therefore, on each slice z const  we may 

use the results obtained in the previous appendix.  

 

A4.1. Solution on planes z = const 

 

On the Opalinus clay ( er r ), as shown in the previous appendix, the non-vanishing 

components of the displacement vector, strain tensor, total stress tensor and pore water 

pressure are given by 

 

( )
OPA

OPA

r

B
u r

r
  

( )
OPA

OPA

r

B
u r

r
 , 

2
( )

OPA
OPA

r

B
r

r
    

2
( )

OPA
OPA B

r
r

   

2
( )

(1 )

OPA OPA
OPA OPA

r OPA

E B
r C

r





   


, 

2
( )

(1 )

OPA OPA
OPA OPA

OPA

E B
r C

r





  


, 

( )OPA OPA

z r C       and 

*( ) OPAp r C   . 

 

On the EDZ ( i er r r  ) and provided that *p  does not depend on r , as shown in the 

previous appendix, the non-vanishing components of the displacement vector, strain tensor 

and total stress tensor and are given by 

 

( )
EDZ

EDZ EDZ

r

B
u r A r

r
   

2
( )

EDZ
EDZ EDZ

r

B
r A

r
    
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2
( )

EDZ
EDZ EDZ B

r A
r

    

2
( ) *

(1 )(1 2 ) (1 )

EDZ EDZ EDZ
EDZ EDZ

r EDZ EDZ EDZ

E E B
r A p

r


  

 
   

    
, 

2
( ) *

(1 )(1 2 ) (1 )

EDZ EDZ EDZ
EDZ EDZ

EDZ EDZ EDZ

E E B
r A p

r


  

 
   

    
     and 

( ) [2 ] *
(1 )(1 2 )

EDZ
EDZ EDZ EDZ

z EDZ EDZ

E
r A p 

 


  

  
, 

 

In order to determine the unknown constants OPAB , OPAC , EDZA  and EDZB , we impose the 

following conditions 

 

( ) 0OPA

r   , 

( ) ( )OPA EDZ

r e r er r    , 

( ) ( )OPA EDZ

r e r eu r u r      and 

( )EDZ MP

r ir    . 

 

Using the expressions of ( )OPA

ru r , ( )OPA

r r , ( )OPA

ru r  and ( )EDZ

r r ,  these conditions read 

 

0OPAC  , 

2 2
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e e
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Since 0OPAC  , this is a linear system of equations in the unknowns OPAB , EDZA  and EDZB . 

The determinant of the matrix of the coefficients of the unknowns reads 
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Since i er r  and it has been assumed that 0 EDZE , 1 1 2EDZ    , 0 OPAE  and  

1 1 2OPA    , this determinant never vanishes so that this system of equations always has a 

unique solution. The solution is given by 
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where EDZA  , 
w

EDZ

pA
, EDZB  , 

w

EDZ

pB
, OPAB   and 

w

OPA

pB
 are constants depending on the effective 

properties of the EDZ EDZE  and EDZ  , the effective properties of the Opalinus clay OPAE  

and OPA   and the geometry of the problem ir  and er . 
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Using these equations, the volumetric deformation in the EDZ is given by 

 

*( ) ( ) ( ) 2( *)EDZ EDZ EDZ EDZ EDZ

vol r pr r r A A p           , 

 

hence it  does not depend on r .  
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A4.2. Influence of the effective parameters of the Opalinus clay 

 

Using the former equations, we see that the dependence of the displacement vector, strain 

tensor and stress tensor fields on the effective parameters of the Opalinus clay OPAE  and 
OPA   is via the shear modulus [2(1 )]OPA OPA OPAG E    . 

 

Note that at the boundary between the EDZ and the Opalinus clay, we have 
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Therefore, for given values of er  and ( )OPA

r er , the displacement at the boundary between 

the EDZ and the Opalinus clay decreases as the shear modulus of the Opalinus clay 

[2(1 )]OPA OPA OPAG E     increases. In the limit as [2(1 )]OPA OPA OPAG E     , we 

have 
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 and 

* 0OPA OPA

pB B   , 

 

which imply the relations 

 

*( *) ( *)EDZ EDZ EDZ

pA A p A p         , 

*( *) ( *)EDZ EDZ EDZ

pB B p B p              and 

*( *) ( *)OPA OPA OPA

pB B p B p         . 

 

Therefore, the Opalinus clay behaves as perfectly rigid and the dependence on the 

megapacker traction   and the pore pressure *p  of the displacement vector, strain tensor 

and stress tensor fields on the EDZ is via the effective traction ( *)p    applied by the 

megapacker to the EDZ, in agreement with the considered generalisation of Terzaghi’s 

effective stress principle. 
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A5. Weak form of the problem 

 

A5.1. Balance of water mass  
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This expression is of the form 
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where 
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A5.2. Balance of air mass  
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This expression is of the form 
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where 
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A6. Shape functions, their derivatives and some related integrals 

 

If the nodes on the domain [0, ]L  are located at Iz  ( 1, ,I N , 1 0z  , Nz L ), and we 

denote by ( )Iw z  the shape function associated with node I   ( 1, ,I N ), then  

 

A6.1. Shape functions  

 

The N  linear two-noded shape functions associated with the N  nodes read  
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Clearly, they are continuous, satisfy the conditions ( )I J IJw z   ( , 1, ,I J N ) and are 

linear on each finite element 1[ , ]I Iz z   ( 1, , 1I N  ). 

 

 

A6.2. Derivatives of the shape functions  
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A6.3. Integrals of the shape functions and of their binary products  
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A7. Nodal Equations 

 

 

A7.1. Balance of water mass  

 

[0, ]

[0, ]

[0, ]

( ) ( ( ) ( ), ( ) ( )) ( )

( ) ( ( ) ( ), ( ) ( )) ( ) ( )

( ) ( ( ) ( ), ( ) ( )) ( ) ( )

I K K L L

w l gK L
L

J
I K K L L J l

w l gK L J
L

J

gI K K L L J

w l gK L J
L

I

d
w z A w z p t w z p t t dz

dt

dp
w z B w z p t w z p t w z t dz

dt

dp
w z C w z p t w z p t w z t dz

dt

dw

d

 
 
 

 
  

 

  
  

  



 

  

  







[0, ]

[0, ]

[0, ]

( ) ( ( ) ( ), ( ) ( )) ( ) ( )

( ) ( ( ) ( ), ( ) ( )) ( ) ( )

( )

( ( ) ( ), ( ) ( ))

J
K K L L J

w l g lK L J
L

I J
K K L L J

w l g gK L J
L

I

L

K K L L

w l gK L

dw
z D w z p t w z p t z p t dz

z dz

dw dw
z E w z p t w z p t z p t dz

dz dz

dw
z

dz

F w z p t w z p t

   
  

  

  
   

  

 
  

 

  

  

 







[0, ]

[0, ]

( ) ( ) ( ) ( )

( )

( ( ) ( ), ( ) ( )) ( ) ( ) ( ) ( )

( )

( ( ) ( ), ( ) ( )) (

M J
M J

l lJ M

I

L

M J
K K L L M J

w l g l gK L J M

I

L

M
K K L L

w l gK L

dw dw
z p t z p t dz

dz dz

dw
z

dz

dw dw
G w z p t w z p t z p t z p t dz

dz dz

dw
z

dz

dw
H w z p t w z p t

dz

  
 
  

 
  

 

  
 
  

 
  

 

 

   

 





 

[0, ]

) ( ) ( ) ( )

( )

( ( ) ( ), ( ) ( )) ( ) ( ) ( ) ( )

( ) ( ( ) ( ), ( ) ( ))

( ) ( ( ) ( ),

J
M J

g lJ M

I

L

M J
K K L L M J

w l g g gK L J M

I K K L L

w l gK L

I N K K L

I w lK

dw
z p t z p t dz

dz

dw
z

dz

dw dw
I w z p t w z p t z p t z p t dz

dz dz

w L J w L p t w L p t

w L K w L p t w

  
 
  

 
  

 

  
 
  





 

   

 





 

 

2 2

( ) ( )) ( )

( ) ( ( ) ( ), ( ) ( )) ( )

( )
(0) 0

( )

L N

g lL

I N K K L L N

I w l g gK L

I w

e i

L p t p t

w L L w L p t w L p t p t

M t
w

r r







 
  

 



 
 

 



Deliverable D4.12  FORGE EU FP-7 PROJECT 

 

 75 

A7.2. Balance of air mass  
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A8. Element and node matrices and vectors 

 

A8.1. Matrix 1[ , ]I Iz z C   

 

The elements of the matrix 1[ , ]I Iz z C  corresponding to the element 1[ , ]I Iz z   are  
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

  

    

1

1, 1 1

, 1
[ , ]

[ ( ), ( )] ( ) ( ) [ ( , ), ( , )]
I I

I g K L I I

a I l g a l g
z z

C p t p t w z w z C p z t p z t dz


  

    
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A8.2. Matrix 1[ , ]I Iz z K   

 

The elements of the matrix 1[ , ]I Iz z K  corresponding to the element 1[ , ]I Iz z   are (1/2)  

 

1

1

,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z












  
  

   




 

1

1

,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z












  
  

   




 

1

1

,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z





 



 


  
  

   




 

1

1

,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z





 



 


  
  

   




 

 

 

1

1

,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z












  
  

   




 

1

1

,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z












  
  

   




 

1

1

,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z





 



 


  
  

   




 

1

1

,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z





 



 


  
  

   




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The elements of the matrix 1[ , ]I Iz z K  corresponding to the element 1[ , ]I Iz z   are (2/2)  

 

1

1

1,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z











 


  
  

   




 

 

1

1

1,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z











 


  
  

   




 

 

1

1

1,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z







 



 


  
  

   




 

 

1

1

1,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

w I l g w l gI I
z z

gl
w l g w l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z







 






  
  

   




 

 

1

1

1,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z











 


  
  

   




 

1

1

1,

, 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z











 


  
  

   




1

1

1,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I l K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t D p z t p z t dz
z z

pp
F p z t p z t z t H p z t p z t z t dz

z z z z







 



 


  
  

   




1

1

1,

, 1 1 2
[ , ]

1 2

[ , ]

1
[ ( ), ( )] [ ( , ), ( , )]

( )

1
[ ( , ), ( , )] ( , ) [ ( , ), ( , )] ( , )

( )

I I

I I

I g K L

a I l g a l gI I
z z

gl
a l g a l gI I

z z

K p t p t E p z t p z t dz
z z

pp
G p z t p z t z t I p z t p z t z t dz

z z z z







 






  
  

   




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A8.3. Vector 1[ , ]I Iz z g   

 

The elements of the vector 1[ , ]I Iz z g  corresponding to the element 1[ , ]I Iz z   are 

 

1[ , ]

[ ( ), ( ), ] ( ) [ ( , ), ( , )] ( )
I I

I K L I

w l g w l g
z z

d
g p t p t t w z A p z t p z t t dz

dt





   

1[ , ]

[ ( ), ( ), ] ( ) [ ( , ), ( , )] ( )
I I

I K L I

a l g a l g
z z

d
g p t p t t w z A p z t p z t t dz

dt





   

1

1 1

[ , ]

[ ( ), ( ), ] ( ) [ ( , ), ( , )] ( )
I I

I K L I

w l g w l g
z z

d
g p t p t t w z A p z t p z t t dz

dt





    

1

1 1

[ , ]

[ ( ), ( ), ] ( ) [ ( , ), ( , )] ( )
I I

I K L I

a l g a l g
z z

d
g p t p t t w z A p z t p z t t dz

dt





    

 

A8.4. Matrix Nz
K   

 

The elements of the matrix Nz
K  corresponding to the node Nz  are 

 
,

, [ ( ), ( )] [ ( , ), ( , )]N l K L

w N l g w l gK p t p t K p L t p L t  

,

, [ ( ), ( )] [ ( , ), ( , )]N g K L

w N l g w l gK p t p t L p L t p L t  

,

, [ ( ), ( )] [ ( , ), ( , )]N l K L

a N l g a l gK p t p t K p L t p L t  

,

, [ ( ), ( )] [ ( , ), ( , )]N g K L

a N l g a l gK p t p t L p L t p L t  

 

A8.5. Vector 1z
g   

 

The elements of the vector 1z
g  corresponding to the node 1z  are 

 

1

2 2

( )
[ ( ), ( ), ]

( )

K L w
w l g

e i

M t
g p t p t t

r r



 

1

2 2

( )
[ ( ), ( ), ]

( )

K L a
a l g

e i

M t
g p t p t t

r r



 

 

A8.6. Vector Nz
g   

 

The elements of the vector Nz
g  corresponding to the node Nz  are 

 

[ ( ), ( ), ] [ ( , ), ( , )]N K L

w l g w l gg p t p t t J p L t p L t   

[ ( ), ( ), ] [ ( , ), ( , )]N K L

a l g a l gg p t p t t J p L t p L t   
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