

FIRST-Nuclides: Outcome, Open Questions and Steps Forward

IGD-TP Exchange Forum n°5, October 28-30th, 2014, Kalmar, Sweden

Bernhard Kienzler, KIT-INE, Germany

Institut für Nukleare Entsorgung (INE)

<u>Acknowledgement</u>: The research leading to these results has received funding from the European Atomic Energy Community's Seventh Framework Programme (FP7/2007-2011) under grant agreement no. 295722, the FIRST-Nuclides project.

Associated Groups

13 Groups participating at their own costs with specific RTD contributions or particular information exchange functions, or mobility measures.

Centre for Nuclear

Engineering

End User Group

London

Imperial College

Review the scientific-technical progress and contributions to the proceedings and assess the project status and provide recommendations

for the work program

Objectives

FIRST Nuclides

- Experimental
 - Quantification of relation FGR to IRF for ¹²⁹I, ⁷⁹Se, ¹³⁵Cs
 - for relevant burn-up / lin. power rate ranges,
 - for full set of sample sizes (pellet, ..., powder),
 - for same groundwater different atmospheric conditions
 - If possible: Quantification (speciation) of elements such as ¹⁴C, Se
- Modelling
 - Up-scaling
- Training, Education, Dissemination
- Further expected outcome of FIRST-Nuclides
 - Definition of instant rapid fast release and delineation to long-term RN release processes.
 - Up-scaling from lab sample to rod/assembly.
 - Effect of geochemical conditions.

Materials

Selection, characterization and preparation of materials and set-up of tools

- Characterization of selected SNF materials with respect to
 - Fuel characteristics, irradiation history,
 - Permission by the fuel owner for publication of key parameters
- Preparation of SNF samples, cladded pellets, pellets, powders, etc.
- Experimental set-ups (autoclaves, irradiation cells, reaction vessels),
 - Sampling devices
 - Analytical equipment in the hot cells

Selected high burn-up UO₂ fuel samples

Relevant SNF samples ✓

	Units	PWR	BWR	THTR / VVER
Enrichment	%	3.80 – 4.94 %	3.30 - 4.25 %	2.4 -16.8%
Burn-up	GWd/t _{HM}	50.4 – 70.2	48.3 – 57.5	
lin. power	W/cm	186 - 330	160	130 – 228
FGR		4.9 – 23 %	1.2 – 3.1 %	

WP 2: Gas release and rim and grain boundary diffusion

Direct comparison between FGR and IRF

Radial FP distribution over the pellet radius by laser ablation mass spectroscopy

WP 2: Non LWR materials

IRF from spent UO2 TRISO coated particles, microstructure evolution

Results on speciation of Selenium

XANES measurements: mixture Se(0) and Se(IV) or pure Se(-II)

Modelling: Homogeneous chemical form, probably as Se(-II) replacing oxygen sites in the UO₂ lattice.

Cooperation PSI & Studsvik

Curti E. et al. (in press). Selenium redox speciation and coordination in high-burnup UO_2 fuel: Consequences for the release of ⁷⁹Se in a deep underground repository. J. Nucl. Mat., DOI: 10.1016/j.jnucmat.2014.07.003.

Behaviour of ¹⁴C

Dissolution based measurements:

→ IRF(14C): below 1.5%

¹⁴C in the plenum gas measurement:

 \rightarrow IRF(¹⁴CO₂ gas) = 0.2 % of ¹⁴C inventory

WP 3: Dissolution based release

Dissolution based radionuclide release and to the extent possible the chemical speciation of the relevant isotopes.

INE: pellet / fragm.

Leachants

	NaCl	NaHCO ₃ -	рН	Conditions
PSI	19	1	8.5	anoxic / slightly oxidizing
KIT	19	1	8.9	Ar/H ₂ (Eh = -116 mV)
ITU/CTM	19	1	7.4	Oxidizing (air)
SCK·CEN	19	1		anoxic / slightly oxidizing
Studsvik	10	2	8.1-8.2	Oxidizing (air)

WP leader: Karel Lemmens (SCK·CEN)

WP1	WP2	WP3	WP4	WP5
-----	-----	-----	-----	-----

IRF_{cs} of different fuel / sample sizes

WP1

WP2

WP3

WP4

WP5

IRF_{iodine} of different fuel / sample sizes

WP1 WP2 WP3 WP4 WP5

Effect of reducing conditions on IRF Rates (Sr, U)

87

WP1

WP2

WP3

WP4

WP5

Dissemination

1st Annual Workshop Proceedings of the Collaborative Project 'FIRST-Nuclides' KIT SR 7639 (2013) Download:

http://dx.doi.org/10.5445/KSP/1000032486

2nd Annual Workshop Proceedings of the Collaborative Project 'FIRST-Nuclides' KIT SR 7676 (2014)

American Nuclear Society

Training Courses:

Geodisposal 2014 Topical sessions during the AWS Young Scientists Training Course, July 09 – 10, 2013 Young Scientists Mobility Measures

Involvement of non-scientific stakeholders:

Meeting with InSOTEC representatives, July 2013 Presentation of InSOTEC outcome @ 2nd AWS

27th Spent Fuel Workshop:

9 oral talks of FIRST-Nuclides results

WP leader: Alba Valls (Amphos21)

WP1

WP2

WP3

WP4

WP5

Findings

FIRST Nuclides

- Release depends on sample characteristics:
 - on the operation parameters, burnup and power rate
 - on the nature of the exposed fuel structures (gap or grain boundaries).
 - Release tends to increase in the order: fragments < clad pellet segments
 opened clad pellets, (exposed surface area / gap inventory.
 - Al/Cr doped fuel have lower IRF (larger grain size)
 - IRF higher for PWR fuel as for BWR fuel (linear power).
- Effect of redox conditions for U, Sr, Tc
 - Significant differences for U, Sr and Tc under oxidizing or reducing conditions
- IRF_{Se/14C}: few data available presently. Measurements not yet completed.

Evaluation of data obtained in FIRST-Nuclides not yet completed.

End-User Comments

- FIRST-Nuclide is highly relevant for all WMO
- IRF contributes substantially to the peak releases after container breaching and to potential radiological consequences.

- Data from experimental determination of rapid release fractions for moderate and high burn-up UO₂ fuels.
- Doped fuels, expected to be used much more in the future.
- Increased data base for release of Cs and I from high burn-up fuel
- Comprehensive comparisons of IRF with fission gas release (FGR)
- Basis to estimate IRF data for a very large number of fuel rods and various reactor operation conditions.
- Improvement of analytical techniques

Conclusions

- Successful project
- Improved understanding of "IRF"
- Correlations between "reactor data" and IRF
- Publications in preparation
- Huge investments on
 - setting-up the experiments,
 - implementing the required analytical tools and instruments and
 - clearance by the utilities to publish the spent fuel data.
 - Experimental duration could be extended
- Open issues still exist

Steps Forward

- Continuation of the 3 years project
 - → maximize the outcome
 - → maximal exploitation of investments (hot cell installations, analytics, staff, ...)
 - Improved statistics for the IRF of other fission products.
 - In depth investigations of low concentrated but relevant isotopes ⁷⁹Se, and ¹⁰⁷Pd, or activation products ³⁶Cl and ¹⁴C.
 - Experiments under repository relevant conditions, i.e. reducing conditions, H2 overpressure
 - Correlations for predicting the IRF from nuclear power plant operational parameters (power rates, ramps, temperatures, FGR).
 - Delineating the instant release from long-term radionuclide release.
 - Additional kind of samples (e.g. MOX, reprocessed uranium fuel, low-FGR fuels, ...)
 - Keeping the know-how.

Proposed Procedure

- FIRST Nuclides
- Keeping the experimental set-up and the materials for a certain interim period in the labs

- Depending on financial support by the WMO
 - Less frequent sampling
 - Storage of samples
- Required support by the WMO/IGD-TP:
 - New project at the next EU Call
 - Materials from utilities (transports, etc.)
 - Receiving operational parameters from the utilities such as power rates, ramps, temperatures, FGR
 - Not only average values!