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Overview

• Increasing Burn-up

• Advanced Fuels

• Other Fuels



Burn-up trends

PWR BWR

Initial enrichment and discharge burn-up data for German Reactors, 2006



Effects of Higher Burn-up

• Effects of burn-up
 crud thickness, 
 cladding oxide thickness
 cladding hydride content
 inventory and distribution of FPs
 heat load
 fuel fragmentation
 porosity size and distribution 
 fission gas release
 residual 235U

• Rating Effects
 Fission gas release
 Distinctive Crud Pattern



Burn-up trends



Effects of Higher Burn-up

• Radionuclide Inventory
The fraction of fissile Pu decreases with burnup;
The fraction of Np and Cm increase with burnup
The fraction of Am decreases with burnup;



Decay Heat Generation Effects



Manufacturing Changes to Fuel

• Manufacture
• Increased sintering time -> marginal increased grain size

• Fuel composition
• Cr -> grain size from 8-12 μm up to 45 μm.
• Gd as a burnable poison

•Cladding 
• changes to composition: Zirlo, M5
• changes to manufacturing processes
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Drivers for Fuel Development

Enhanced Safety during Accident Conditions
• Enhanced Coolant Containment
• Enhanced Fuel Retention within Cladding

Enhanced Sustainability
• replace Unat with Urep
• reduce repository burden

Enhanced Economics
• Better Burn Ups
• Better Operational Flexibility
• Better Manufacturability



Candidate Fuel Developments
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Candidate Cladding Developments
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Comparison of some fuel 
properties

Uranium dioxide (UO2)
• U-235 enrichments up to 5%
• Fuel of choice for light water reactors 

(LWRs) for many years
• Manufacturing routes are well 

established
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UO2 10.96 - 2.8 2840 10
UN 14.3 +40% 22.8 2762 8

U3Si2 12.2 +18% 17.3 1665 15

“Challenging the status quo will 
require safety, environmental and 
economic benefits to be 
demonstrated to both fuel 
manufacturer and reactor 
operator!”

Fuel could spend longer in 
reactor (increase cycle length) or 
attain same cycle length for lower 
enrichment

Reduce peak temperatures in 
centre of pellet and thermal 
stresses during normal ops and 
beyond design basis accidents



Comparison of some cladding 
properties

• Zirconium-alloy cladding currently 
used in all Light Water Reactors

• Zirconium-alloys have reasonable 
corrosion resistance at normal 
operating temperatures (below 
350°C)

• At higher temperatures the 
oxidation rate accelerates, and 
above 500ºC gross oxidation can 
occur

• Results in the evolution of large 
quantities of hydrogen that can 
explode

• Ceramic cladding such as SiC 
has much greater resistance 
to oxidation in water and 
steam, even at high 
temperatures

• Good radiation stability

• Low neutron capture cross-
section

• Greater mechanical strength 
at high temperatures.



Evaluating the performance of 
novel fuels-clad systems 

Steps are being undertaken through various multi-national collaborative 
projects to make the fuel-clad system components and then to test their 
properties and down select fuel-clad pairings prior to coupled tests and 
subsequent irradiation trials.

The performance of these fuels under test will require analysis and 
validation and will ultimately provide data for predictive models.

These models will be used to predict the performance of new fuel designs 
under different operating conditions, including accident scenarios.

Reactor test programmes require significant investment and therefore the 
tests need to be designed to maximise value, for example by testing the 
performance of new fuel designs as applicable to code parameters with the 
largest effects or impacting uncertainties.

Some programmes are assessing potential implications for back-end 
management of the fuels and this is to be encouraged.   
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Other Fuels

• Old
• Gas-cooled reactors
• HTRs
• Experimental reactors 
• Research reactors (U/Al)
• Un-reprocessed fuels

• and New
• Small Modular Reactors

• Light water reactors
• High Temperature gas-cooled reactors
• Liquid metal cooled fast reactors
• Gas-cooled fast reactors

• Gen IV experimental reactors



The End

Thank you for your attention

Any questions ?

David Hambley
Spent Fuel Management and Disposal
Fuel Cycle Solutions
National Nuclear Laboratory

email: david.i.hambley@nnl.co.uk
tel: 019467 79122 / 07709 332 876


