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Initial enrichment and discharge burn-up data for German Reactors, 2006
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e Effects of burn-up
» crud thickness,
» cladding oxide thickness
» cladding hydride content
» Inventory and distribution of FPs
» heat load
» fuel fragmentation
» porosity size and distribution
» fission gas release
» residual 23U

e Rating Effects
» Fission gas release
» Distinctive Crud Pattern
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e Radionuclide Inventory
» The fraction of fissile Pu decreases with burnup;
» The fraction of Np and Cm increase with burnup
» The fraction of Am decreases with burnup;
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e Manufacture
e Increased sintering time -> marginal increased grain size

e Fuel composition
e Cr -> grain size from 8-12 ym up to 45 pm.
e Gd as a burnable poison

Cladding
e changes to composition: Zirlo, M5
e changes to manufacturing processes
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Enhanced Economics

e Better Burn Ups

e Better Operational Flexibility
e Better Manufacturability

Enhanced Safety during Accident Conditions
e Enhanced Coolant Containment
e Enhanced Fuel Retention within Cladding

Enhanced Sustainability
e replace Unat with Urep
e reduce repository burden
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Uranium dioxide (UO,)
» U-235 enrichments up to 5%
» Fuel of choice for light water reactors

“Challenging the status quo will
require safety, environmental and
economic benefits to be

LWRSs) for man r
( s) fo . any years demonstrated to both fuel
» Manufacturing routes are well
. manufacturer and reactor
established

operator!”

Materi | Theoretica | Difference Thermal Melting | Thermal
al | density in heavy conductivit | Point expansi
(TD) metal TD y at /° C on

/gcm-3 compared to | 1100° C coefficie
uo, /Wm-1K-1 nt /x10-
6K—1

10.96 2.8 2840
14.3 +40% 22.8 2762 “

1665
Fuel could spend longer in Reduce peak temperatures in
reactor (increase cycle length) or centre of pellet and thermal
attain same cycle length for lower stresses during normal ops and
enrichment beyond design basis accidents




Comparison of some cladding NATIONALNUCLEAR....

LABORATORY @
0)

properties

« Zirconium-alloy cladding currently Ceramic cladding such as SiC
used in all Light Water Reactors has much greater resistance
to oxidation in water and

« Zirconium-alloys have reasonable :
steam, even at high

corrosion resistance at normal

: temperatures
operating temperatures (below
350° O) « Good radiation stability
« At higher temperatures the  Low neutron capture cross-
oxidation rate accelerates, and section
o .
glg(?:re 500°C gross oxidation can Greater mechanical strength

at high temperatures.
* Results in the evolution of large

quantities of hydrogen that can

explode
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novel fuels-clad systems

Steps are being undertaken through various multi-national collaborative
projects to make the fuel-clad system components and then to test their
properties and down select fuel-clad pairings prior to coupled tests and
subsequent irradiation trials.

The performance of these fuels under test will require analysis and
validation and will ultimately provide data for predictive models.

These models will be used to predict the performance of new fuel designs
under different operating conditions, including accident scenarios.

Reactor test programmes require significant investment and therefore the
tests need to be designed to maximise value, for example by testing the
performance of new fuel designs as applicable to code parameters with the
largest effects or impacting uncertainties.

Some programmes are assessing potential implications for back-end
management of the fuels and this is to be encouraged.
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- Old
» Gas-cooled reactors
e HTRs
e Experimental reactors
 Research reactors (U/Al)
e Un-reprocessed fuels

e and New
e Small Modular Reactors
e Light water reactors
e High Temperature gas-cooled reactors
e Liquid metal cooled fast reactors
e Gas-cooled fast reactors
e Gen IV experimental reactors
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Thank you for your attention

Any guestions ?

David Hambley

Spent Fuel Management and Disposal
Fuel Cycle Solutions

National Nuclear Laboratory

email: david.i.hambley@nnl.co.uk
tel: 019467 79122 / 07709 332 876




