Fuel data needs for Posiva's postclosure safety case

B. Pastina (Posiva)
IGD-TP 5th Exchange Forum
Kalmar 28-29.10.2014

Disposal system at Olkiluoto, Finland

...now preparing the new safety case (TURVA-2020) for the operational license application

TURVA-2012 Safety case report portfolio

SYNTHESIS

Design Basis

Description of the Disposal System

Features, Events and Processes

Performance Assessment

Formulation of Radionuclide Release Scenarios

Models & Data reports

Assessment of Radionuclide Release Scenarios for the Repository System &

Biosphere Assessment

Complementary Considerations

www.posiva.fi

Key reports of the safety case

- Performance assessment
 - most likely evolution over 1M years
 - the barriers perform as designed
 - i.e. they meet the design requirements
 - e.g. sub-criticality over 1M years
 - the effect of uncertainties are analysed in these reports ->

- Formulation of scenarios
 - i.e. what can go wrong?
- Assessment of scenarios
 - i.e. how bad does it get?
 - radionuclide release and transport model
 - dose assessment

Fuel properties that matter...

- For the whole safety case
 - Spent fuel type and overall inventory (tU)
 - Decay heat limits on the canister
- For the performance assessment
 - ensure the fulfillment of the requirements set on the fuel/canister e.g.
 - waste acceptance criteria
 - fuel type and amounts
 - decay heat
 - criticality safety-related requirements
 - safeguards-related requirements

Fuel data that affect criticality safety

- Radionuclide inventory & evolution with time
 - inventory of fissile radionuclides
 - inventory of burnup credit-related radionuclides
 - Only U-235 and U-238
 - Actinide-only
 - Actinides + FPs
 - U-235, U-238 + FPs
 - U-235, U-238 + rare earths (Sm, Gd, Nd etc)
 - need to account for the long times and the stability of the elements in the fuel matrix
- Geometry & materials evolution with time
 - presence of water and other moderators, neutron reflectors...

Increased need for isotopic codes validation

In case long-term criticality cannot be excluded...

- Models and data are needed to evaluate the potential consequences of a criticality event in disposal conditions
- (restricted access?) Codes for criticality event consequence evaluations are needed
 - rapid transient scenario consequences
 - quasi steady-state scenario consequences
- The output would be ≠ source term(s) for long-term criticality scenario formulation and assessment
- Spatial distribution of fission & activation products?
- Temperature distributions?

Fuel properties that matter...

- For the whole safety case
 - Spent fuel type and overall inventory (tU)
 - Decay heat limits on the canister
- For the performance assessment
 - Fulfilment of requirements
- For the formulation and assessment of scenarios
 - Data to compile the source term for the radionuclide release and transport model
 - Radionuclide (RN) inventory
 - Partitioning of RNs within the fuel assembly
 - RN release properties of the various parts of the fuel assembly

Fuel data for the source term (1/4)

- Data that affect the radionuclide inventory at the time of disposal
 - geometry of fuel and of the fuel in the core
 - U-235 initial enrichment
 - irradiation history, e.g.:
 - linear heat generation rate
 - average assembly burnup at discharge
 - (void history for BWR, use of control rods for PWR, UO₂ density...)
 - cooling time before encapsulation
 - fission gas release to estimate the labile fraction of RNs
 - impurities (N, Cl) in the UO₂ matrix, cladding and other metal parts
 - they affect the C-14 and Cl-36 inventory calculations

Fuel data for the source term (2/4)

- The radionuclides (RN) are distributed among 4 compartments:
 - Gaps, cracks, grain boundaries (labile fraction or IRF)
 - UO₂ matrix
 - Cladding
 - Other metal parts in the fuel

Johnson & Tait 1997

Fuel data for the source term (3/4)

- Data that affect RN release rates
 - fuel types (UO₂, MOX, vitrified matrix)
 - dissolution/corrosion rates in disposal conditions
 - thickness of the cladding/other metal parts

Fuel data for the source term (4/4)

- Additional source terms inside the canister?
- e.g.
 - control rod assemblies
 - materials, inventories, release properties?
 - presence of leaking or damaged fuel rods
 - partially oxidised UO₂ has different release rates
 - presence of crud
 - amount, composition
 - RN inventory
 - release rates

Bottom line...

- If a new fuel design or a new reactor type is considered, data are needed to assess...
- criticality safety
 - e.g. models, data and codes for criticality safety analyses and consequence evaluation, if needed
- radionuclide release properties of the new waste stream in repository conditions
 - fuel with chemical additives (e.g. Cr and Al)
 - fuel with burnable poisons (Gd₂O₃)
 - new cladding or structural materials
 - fuel design enhancements
 - e.g. liner at pellet/cladding
 - leaking fuel rods
 - i.e. extent of oxidation of UO₂ pellets, cohesion of UO₂ matrix

Feedback to the information exchange platform with SNTP

- There is a need for cooperation between the nuclear fuel community and the radioactive waste management community
- Consider the whole life cycle of the fuel to evaluate the impact of potential fuel/reactor design changes
- There is also a need to develop together methods to verify the fulfillment of the requirements set on the fuel, e.g.
 - waste acceptance criteria
 - incl. decay heat
 - criticality safety-related requirements
 - safeguards-related requirements

POSIVA