

Microorganisms of radionuclides-contaminated soils of Chernobyl: in depth analysis of diversity and study of uranium-bacteria interactions.

V. CHAPON, N. THEODORAKOPOULOS, R. CHRISTEN, T. VERCOUTER, L. PIETTE, F. COPPIN, A. MARTIN-GARIN, C. LE MARREC, M.H. VESVRES, C. SERGEANT, C. BERTHOMIEU, L. FEVRIER.

Laboratoire des Interactions Protéines-Métal, CEA Cadarache, France

IGD-TP Exchange Forum, Kalmar, 28-30th 2014

The Trench T22 in the Chernobyl exclusion zone

A nuclear waste storage trench where contaminated debris were buried in 1987.

Experimental platform for the study of RNs transfer.

Impact of RNs on bacterial diversity ? Impact of bacteria on RNs transfer ?

Impact of RNs on soil microbial diversity

50-60 cm depth, aerobic

Metagenomic DNA extraction

Sampling campaigns in April (single) and October (triplicates) 2009

- \rightarrow 12 control samples
- \rightarrow 24 contaminated samples

In-depth analysis of soil bacterial communities

16SrRNA genes (V4 region) 454-pyrosequencing

695,349 high quality reads 13,347 reads per samples

- the diversity is saturated
- high apparent diversity in all samples
- slight positive effect of the trench conditions on bacterial diversity

Comparative analysis of bacterial communities

Hierarchical clustering and PCA (OTU at 97%)

- Different species composition and relative abundance
- Impact of the trench conditions on bacterial communities

Comparative analysis of bacterial communities

- High abundance of *Chloroflexi*
- Enrichment in *Acidobacteria*, *Proteobacteria* and *Planctomycetes* in the trench.
- Decrease of Chloroflexi and Verrucomicrobia

Isolation of a uranium-tolerant species

Collection of cultured isolates

Microbacterium sp. A9

Aerobic culture in TSB/10 pH7 uranium 500 μM 24h 30°C

Influence of uranium speciation on its cellular localization

Cell survival? Active mecanism?

Microbacterium-uranium interactions at pH5

24 h exposure Cell viability, U in the supernatant, subcellular localization, speciation.

Theodorakopouls et al. (2014) J Hazard Metal, minor revisions

Cell survival

- A 4°C: 100% survival
- A 25°C: 100% with 0 and 10 μM U, 61% with 50 μM

Uranium sequestration

- ✓ Rapid sorbtion of U (passive)
- ✓ Transient efflux with 10μ M U only (active)
- ✓ Slow U accumulation (active)

Subcellular localization of U (TEM-EDX)

Uranium speciation (FTIR and TRLF)

At 6h: 34% U-P + 6% autunite + background At 24h: 45% U-P + 15% autunite + background

- 4°C: U interacts with carboxyl and phosphoryl groups. Stable
- 25°C: carboxyl groups > phosphoryl/phosphate groups during the first step phosphoryl/phosphate groups>carboxyl groups after 6h exposure
- Presence of autunite and U-Phosphate

Ongoing studies...

Working model

Cellular response to uranium stress: -global approaches (transcriptomic, proteomic) -identification of the transporter involved in U efflux

Impact on uranium transfert: -soil columns Thank you for your attention !

	50 μM 25°C	50 μM 4°C	10 μM 25°C	10 μM 4°C
Species name	% of total concentration			
UO2 ²⁺	46.96	63.17	67.53	73.83
UO₂OH⁺	12.66	17.00	18.19	19.84
(UO ₂) ₂ (OH) ₂ ²⁺	19.98	8.39	8.25	2.29
(UO ₂) ₃ (OH) ₅ ⁺	14.98	0.93	1.77	0.06
UO₂CI⁺	2.51	2.72	3.63	3.19
(UO ₂) ₃ (OH) ₄ ²⁺	1.40	3.63	0.17	0.23
(UO ₂) ₄ (OH) ₇ +	0.79	2.94	0.03	0.04
(UO ₂) ₂ OH ³⁺	0.57	1.02	0.23	0.28
UO ₂ (OH) ₂	0.12	0.17	0.18	0.20
UO ₂ NO ₃ ⁺	0.01	0.03	0.02	0.03

Uranium speciation in NaCl 0.1M pH5 (MINTEQ): 60 to 93% soluble