REMAINING UNCERTAINTIES REGARDING SULPHIDE PRODUCTION, FLUXES AND CONCENTRATIONS IN RADIOACTIVE WASTE REPOSITORIES

Karsten Pedersen

Kap@micans.se Microbial Analytics AB, Mölnlycke, Sweden

Why sulphate-reducing bacteria (SRB):

Safety assessment of geological disposal of radioactive wastes

A copper mini-canister that has been exposed to vivid microbial sulphide formation from sulphate, possibly with H₂ from the corroding cast iron insert as the electron donor.

Images from: Smart, N.R., et al., Corrosion Engineering, Science and Technology, 2014. **49**(6): p. 548-553

Day 0

After 5 years with SRB

H₂ as electron donor

The sulphide production rate in the three flow cells between days 0–21 and 21–43 versus the average H₂ concentration in these time intervals for the respective flow cell.

Michaelis-Menten kinetics

Pedersen K. (2012) Influence of H_2 and O_2 on sulphate-reducing activity of a subterranean community and the coupled response in redox potential. *FEMS Microbiology Ecology* 82, 653-665.

Two cases in the Aspö tunnel

- KJ0052F01, KJ0052F03 and KJ0050F01 at MICROBE 450 m depth
- KA3110A (400 m) and KA3385 (420 m)

KJ0052F01 KJ0052F03 KJ0050F01

To micans

KA3385A

KA3110A

Drilling of KA3386A drained >15 000 m³ from the MICROBE aquifers

2004

February – June: Drain

June: H₂ up

September: SRB up

November: S₂ up

December: H₂ down

Later: S₂ down

Sulphide KA3110A (400 m) and KA3385 (420 m)

H₂ KA3110A (400 m) and KA3385 (420 m)

Presence of SRB in both groundwater types (454 seq.)

KA3110A 10.4 % SRB

KA3385A 30.7 % SRB

- Total Number of Cells TNC
 - ATP
- Culturable Aerobic Bacteria CHAB
 Most probable number (MPN)
 - Nitrate-reducing bacteria (NRB)
 - Iron-reducers (IRB)
 - Manganese-reducers (MRB)
 - Sulphate-reducers (SRB)
 - Autotrophic acetogens (AA)
 - Heterotrophic acetogens (HA)
 - Autotrophic methanogens (AM)
 - Heterotrophic methanogens (HM)
 - Methane oxidizing bacteria (MOB

Gases over site and depth Hydrogen Methane

Sulphur in Olkiluoto groundwater

From: Pedersen K., Arlinger J., Hallbeck A., Hallbeck L., Eriksson S. and Johansson J. (2008) Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4 to 450 m in Olkiluoto, Finland. *The ISME Journal 2, 760-775.*

Parameters controlling MPN

The relationship between most probable number (MPN) in the dataset, and the concentrations of sulphate and methane expressed as a pair-wise correlation graph

The relationship between MPN numbers in the dataset, and the concentrations of sulphate and methane in the left figure represented in a three-dimensional graph according to a distance-weighted least squares model

The effect of H₂ or CH₄ on sulphate

A sulphate-rich groundwater from 399 m in ONKALO

●: 2.2 mM O₂ and 7.9 mM N₂ – inactivated
■: 10 mM CH₄

 \blacktriangle : 10 mM H_2 and 10 mM CH_4

³⁴ S _{V-CDT}	(‰)	
±SD. n	= 3	

day	O ₂ :N ₂	CH ₄	H ₂ :CH ₄
	-0.43	+1.78	+2.06
0	29.57	29.92	30.58
U	(±0.22)	(±0.14)	(±0.13)
105	29.14	31.69	32.64
100	(±0.24)	(±0.21)	(±0.19) ₁₃

The effect of CH₄ on sulphate

Sulphate-free and sulphate-rich groundwater

•: Sulphate rich groundwater

■: Sulphate free groundwater added with sulphate

▲: Sulphate-free groundwater

Amendment of excess (saturation) methane was done at 134 days.

Sulphide production proceed in MX-80 bentonite at densities <2000 kg m⁻³

Figure 4. 3D raw data plots based on gross counts from autoradiography analysis of copper discs for test cells 1-5 and bottom side for test cell 3 (Left) and test cells 6-10 and bottom side for test cell 8 (Right). Color scale according to legend for each image. Test cells 3 and 8 were analyzed one month before the others and gross counts are not adjusted for half-life of the isotope (87.4 days).

Swelling pressure and clay type

Figure 5-7. Measured swelling pressures in the Wyoming MX-80, Milos Deponit CA-N and the Friedland clay in equilibrium with pure water (left). The same original materials purified and ion-exchange to Na⁺ state in equilibrium with pure water (right).

From SKB-TR-06-30 Mineralogy and sealing properties of various bentonites and smectite-rich clay materials

an micans

FEP: microbial sulphide production

- Sulphide production in Olkiluoto and Äspö accelerated when $[H_2] > 1 \mu M$.
- Sulphate reduction rate increased in Olkiluoto groundwater experiments when [CH₄] > 25 mM
- Sources, concentrations and fluxes of reduced gases in groundwater and rock matrix are needed for modelling of long-term microbial sulphide producing activity in safety assessment of geological disposal of radioactive wastes
- Microbial sulphide production can proceed in MX-80 buffer density up to at least 1900 kg m⁻³; what about other types of clay?

Sunicans

Acknowledgements

- MICROBIAL ANALYTICS SWEDEN AB
 - Andreas Bengtsson, Alexandra Chukharkina, Johanna Edlund, Lena Eriksson, Björn Hallbeck, Lotta Hallbeck, Jessica Johansson, Linda Johansson and Lisa Rabe.
- Personnel at Äspö and ONKALO underground research laboratories and numerous colleagues and co-authors over 25 years of deep biosphere exploration.
- THE RESEARCH LEADING TO THESE RESULTS WAS FUNDED BY
 - Census of Deep Life (CoDL), Carnegie Institution of Washington Deep Carbon Observatory, USA
 - European Union's European Atomic Energy Community's (Euratom)
 Seventh Framework Programme FP7/2007-2011 under grant agreement no. 212287 (RECOSY project).
 - NOVA Oskarshamn
 - Posiva Oy, Olkiluoto, Finland
 - The Swedish Nuclear Fuel and Waste Management Co.
 - The Swedish Research Council