Improving realism and reducing pessimisms in the safety case for geological disposal of ILW

Microbiological FEPs important for ILW

Joe Small
Safety cases for geological disposal of ILW recognise that microbial processes may occur in the waste and the barrier system

- Mostly, no explicit account is taken of the effects of microbes in performance assessment (PA)

Different treatments/cases:

- Detailed microbiological processes may be subsumed/simplified within other chemical FEPs
- Processes have been ignored (where conservative) due to uncertainties or data requirements
- Some microbiological processes have not been considered because of incorrect assumptions / lack of research
Microbial effects on speciation, solubility, sorption of redox sensitive radionuclides (e.g. Se, Tc, U)

- Microbial processes mediate processes governed by thermodynamics
- Representation by equilibrium models is considered adequate

Biogeochemical research underpins this simplified approach

- e.g. examining mechanisms of U and Tc reduction
Conservative representation of Microbiological FEPs

- Effects of alkaline cellulose degradation products (CDPs)
 - Conservative approach ignores biodegradation of CDPs
 - Recent research shows microbial activity at pH 11 (Rizoulis et al, 2012) and microbial utilisation of CDPs at pH10 (Bassil et al, 2014)

- Potential to reduce significance of CDP / radionuclide transport FEPs

- However, are there other FEPs related to alkaline cellulose biodegradation?
Gas generation experiment, VLJ Repository, Olkiluoto

~13m3 of gas generated after ~16 years
Cellulose biodegradation - effect on pH and bicarbonate

- The VLJ repository design has a small pH buffering capacity
 - Small amount of concrete
 - High water content
- However, it improves understanding of microbial / cellulose degradation FEPs
Microbial cellulose degradation - further effects

- Lower pH – effects on radionuclide sorption and solubility
- Aqueous carbonate may act as a complexing ligand e.g. for U(IV)
- Carbonation of cement may
 - Affect flow properties of porous cement backfill
 - Armour/isolate backfill, further reducing pH buffering
Gas FEPs - treatment in the safety case

- Generally conservative with respect to CH₄ generation
 - Microbial processes are considered!
 - Assumptions/models vary between WMOs
 - pH limitation, wasteform/pH heterogeneity?

- H₂ utilisation as electron donor ignored
 - Conservative with respect to H₂ generation by anaerobic corrosion and radiolysis
 - Research now started

- Inconsistent consideration of H₂ in methanogenesis
 - \(4H₂ + CO₂ \rightarrow CH₄ + 2H₂O\)
TVO gas experiment - very limited H₂ production

Methanogenesis after sulphate reduction

Sulphate reduction is a key process for ILW
- Outcompetes (limits) methanogenesis
- Main sink for H₂

No H₂ after sulphate reduction established ~year 1999/2000
Mont Terri URL – H_2 studies
Loss of H₂ due to reaction with Fe(III) or SO₄²⁻? (Vinsot et al)
In situ microbial oxidation of H₂

Alexandre Bagnoud, Rizlan Bernier-Latmani [EPFL]
Olivier Leupin, Bernhard Schwyn [NAGRA]
Ino deBruijn, Anders Andersson [SciLifeLab, KTH]
Karuna Chourey, Robert Hettich [ORNL]
H₂ consumption chemistry

Recirculation mode

Batch mode

Results

Pressure (kPa)

Flow rate (ml/min)

Fe(II) [µM]

Sulfide (µM)

O₂ [mg/L]

O₂ reduction

Fe(III) reduction

Sulfate reduction

Time (Days)
Microbial analysis

SO$_4^{2-}$-reducing bacteria

Desulfosporosinus

Desulfotomaculum

Novispirillum

Desulfoccapsa

O$_2$-reducing bacteria
Microbial ILW FEP Summary (groundwater)

- Influence on radionuclide valency / mobility
 - No specific representation needed?
 - Justified by underpinning biogeochemical research
 - More detailed FEP representation unlikely to have significant impact on safety analysis

- Cellulose degradation
 - Scope to reduce radionuclide mobility though degradation of CDPs & other organic complexants
 - Microbial effects on pH & carbonate – complex FEP interactions - could enhance radionuclide mobility

- Other organic polymers
 - Degradation rate and products (including gases) uncertain
 - Combined effects of radiolysis and biodegradation?
Microbial ILW FEP Summary (gas)

- **Methanogenesis**
 - pH limitation / heterogeneity
 - SRB competition
 - Effects could either enhance or reduce CH$_4$ generation and speciation / mobility of 14C

- **Hydrogen utilisation**
 - Reduce gas flux and 14C gas release
 - Lower rates of gas generation, beneficial to physical FEPs; pressurisation, cracking, effects on hydrogeology etc

- **Sulphate reduction**
 - Indirect effects on the above processes involving CH$_4$ & H$_2$ gases
 - Also important for organic/groundwater FEPs

- **Microbial FEPs need to be considered under *in situ* conditions**
 - Need to consider physical constraints on microbial growth
 - Studies to date are mainly in laboratory microcosms or in water filled boreholes
 - Microbial processes within ILW packages (storage & disposal)