

Improving realism and reducing pessimisms in the safety case for geological disposal of ILW

Microbiological FEPs important for ILW

Joe Small

- Safety cases for geological disposal of ILW recognise that microbial processes may occur in the waste and the barrier system
 - Mostly, no explicit account is taken of the effects of microbes in performance assessment (PA)
- Different treatments/cases:
 - Detailed microbiological processes may be subsumed/simplified within other chemical FEPs
 - Processes have been ignored (where conservative) due to uncertainties or data requirements
 - Some microbiological processes have not been considered because of incorrect assumptions / lack of research

Subsumed/Simplified representation of NATIONAL NUCLEAR FEPs

- Microbial effects on speciation, solubility, sorption of redox sensitive radionuclides (e.g. Se, Tc, U)
 - Microbial processes mediate processes governed by thermodynamics
 - Representation by equilibrium models is considered adequate
- Biogeochemical research underpins this simplified approach
 - e.g. examining mechanisms of U and Tc reduction

- Effects of alkaline cellulose degradation products (CDPs)
 - Conservative approach ignores biodegradation of CDPs
 - Recent research shows microbial activity at pH 11 (Rizoulis *et al*, 2012) and microbial utilisation of CDPs at pH10 (Bassil *et al*, 2014)
- Potential to reduce significance of CDP / radionuclide transport FEPs
- However, are there other FEPs related to alkaline cellulose biodegradation?

Gas generation experiment, VLJ Repository, Olkiluoto

Cooling tubes

Thick tubes:

sampling of solids

Concrete

On-line sampling

Thin tubes:

sampling of liquids

box

Celluose biodegradation effect on pH and bicarbonate

The VLJ repository design has a small pH buffering capacity

- Small amount of concrete
- High water content

 \geq

 \succ

However, it improves understanding of microbial / cellulose degradation FEPs

- Lower pH effects on radionuclide sorption and solubility
- Aqueous carbonate may act as a complexing ligand e.g. for U(IV)
- Carbonation of cement may
 - Affect flow properties of porous cement backfill
 - Armour/isolate backfill, further reducing pH buffering

Gas FEPs - treatment in the safety case NATIONAL NUCLEAR

- Generally conservative with respect to CH₄ generation
 - Microbial processes are considered!
 - Assumptions/models vary between WMOs
 - pH limitation, wasteform/pH heterogeneity ?
- > H₂ utilisation as electron donor ignored
 - Conservative with respect to H₂ generation by anaerobic corrosion and radiolysis
 - Research now started
- Inconsistent consideration of H₂ in methanogenesis
 - $4H_2 + CO_2 \implies CH_4 + 2H_2O$

TVO gas experiment- very limited H₂ production

Sulphate reduction is a key process for ILW

- Outcompetes (limits) methanogenesis
- Main sink for H₂

Mont Terri URL – H₂ studies

Hydrogen Transfer (HT) Experiment Agnes Vinsot *et al*, 2014

Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. Geological Society, London, Special Publications, **400**

Fig. 9. Observed and calculated evolution of hydrogen, helium and neon over 100 days after the first hydrogen injection.

Microbial Analysis (MA) experiment NATIONAL NUCLEAR Slides from Rizlan Bernier-Latmani

In situ microbial oxidation of H₂

Alexandre Bagnoud, Rizlan Bernier-Latmani [EPFL]

JGI 💥 JOINT GENOME INSTITUTE

H₂ consumption chemistry

Microbial analysis

Microbial ILW FEP Summary (groundwater)

- Influence on radionuclide valency / mobility
 - No specific representation needed?
 - Justified by underpinning biogeochemical research
 - More detailed FEP representation unlikely to have significant impact on safety analysis
- Cellulose degradation
 - Scope to reduce radionuclide mobility though degradation of CDPs & other organic complexants
 - Microbial effects on pH & carbonate complex FEP interactions could enhance radionuclide mobility
- Other organic polymers
 - Degradation rate and products (including gases) uncertain
 - Combined effects of radiolysis and biodegradation ?

Microbial ILW FEP Summary (gas)

- > Methanogenesis
 - pH limitation / heterogeneity
 - SRB competition
 - Effects could either enhance or reduce CH_4 generation and speciation / mobility of ^{14}C
- Hydrogen utilisation
 - Reduce gas flux and ¹⁴C gas release
 - Lower rates of gas generation, beneficial to physical FEPs; pressurisation, cracking, effects on hydrogeology etc
- Sulphate reduction
 - Indirect effects on the above processes involving CH₄ & H₂ gases
 - Also important for organic/groundwater FEPs
- Microbial FEPs need to be considered under in situ conditions
 - Need to consider physical constraints on microbial growth
 - Studies to date are mainly in laboratory microcosms or in water filled boreholes
 - Microbial processes within ILW packages (storage & disposal)