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1.  Aleatory and epistemic parameter uncertainties 

• confidence in the safety of a Deep Geological Repository requires 
identification & assessment of uncertainties concerning evolution 
scenarios, models for predicting repository performance and the 
values/distributions of model parameters (100s of uncertain inputs 
considered in performance assessments for WIPP and YMR)  

• aleatory uncertainty = variability (inherent randomness caused by 
stochastic processes or heterogeneity within a basic population), 
objective and irreducible 

• epistemic uncertainty = incertitude (owing to data imprecision, 
imperfect knowledge or ignorance, sampling number limitation), 
subjective and reducible by additional data/information 

• both uncertainty types are usually described in terms of probability   
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2. Bayesian Probability Theory (PT) 

• PT is adequate for the modeling of random variability 

• Bayesian PT is appropriate for presentation & reduction of incertitude 
concerning statistical distribution parameters by means of new data: 

pX(x|θ) = PDF of a random variable X;    x = (x1, x2, …, xn)  iid sample 

likelihood function: 

pΘ(θ) = prior density of distribution parameter(s) θ 

=> posterior density for θ (incertitude):  

Bayesian PT enables 2nd order probability (2D) Monte Carlo simulation 
with outer loop for epistemic uncertain distribution parameters Θ and 
inner loop for random variables X with randomly sampled θ-values.  
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2. Bayesian Probability Theory (PT) 
Example 1 

X ~ Gam(α, β); Y ~ Exp(λ); (α, β, λ) = (2, 5, 1); nx = ny = 25; Z = X⋅Y 
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2. Bayesian Probability Theory (PT) 
Example 1 

Cumulative distribution functions: CDFZ(z) describes variability; CDFZ;q(z) 
(q = confidence level) characterize incertitude owing to parameters α, β, λ  
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3. Evidence Theory (ET) – a generalization of PT 

Ω = set of events xi (i = 1 to k); including Ω  and the empty set ∅, the 
set of all subsets A (so-called power set PΩ ) has 2k elements; 
PT defines probabilities pi (chances or subjective degrees of belief) for 
all singletons xi with:  
                                                 ,                          , =>           

ET defines probabilities m(A) (basic probability assignments) for all 
subsets A by a mapping   

Focal sets (A with m(A) > 0) define two non-additive belief  measures, 
Belief:                                ,  Plausibility: 

=> Bel(A) ≤ Pl(A), and  (if m(∅) = 0)   Bel(A) + Pl(Ac) = 1 
ET generalizes PT; represents degree of Ignorance = Pl(A) - Bel(A) 
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3. Evidence Theory (ET) – a generalization of PT 
Example 2 

Expert judgement for model parameter X (e. g. evidence transfer from former 
investigations to another site or to future conditions): x∈ Ii with mi; i = 1 - 4; 
{I, m} = ({[1, 9], 0.3}; {[2, 6], 0.2}; {[4, 10], 0.3};{[5, 9], 0.2}); 
ET: calculation of cumulative functions CBel(X ≤ x) and CPl(X ≤ x); 
Bayesian PT could assume uniform / symmetric triangular distributions 
in the intervals Ii and calculate pU(x) / pTr (x) by averaging with mi 
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4. Propagation of parameter uncertainties in models 

ET includes PT and Possibility Theory (specific case if focal sets are nested), and 
allows for combined propagation of respective belief measures in models, e. g.: 
X and Y independent variables with {IX, mX} and {IY, mY}; 
Z = X⋅Y; => {IZ, mZ} with IZ;i,j = IX;i⋅IY;j and mZ;i,j = mX;i⋅mY;j 

Example 3: X with ET-measures as in Example 2; for Y a probabilistic triangular 
distribution Y~Tr(4, 6, 8) leading to Z-case “E;P”, and a respective possibilistic 
distribution πY(4, 6, 8) transformed to {IY, mY} with mY;j = ∆π → 0, leading to “E;E”   
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5. Description of statistical dependencies by 
Copulas 

• In Monte Carlo simulation programs, statistical dependencies between 
variables X and Y is usual modelled by SPEARMAN rank correlation ρX,Y. 

• Copulas are much more expressive and allow for separated analysis and 
simulation of joint distribution functions H(x, y) by their margins F(x) and 
G(y) and a Copula function C(u, v): [0, 1]2→ [0, 1] that not depends on the 
types of the margins, but only characterizes dependency between X and Y.  

• For H(x, y) with margins F(x) and G(y) exists a Copula C(u, v) such that for 
∀ x, y: H(x, y) = C(F(x), G(y)); C is unique if F and G are continuous. 

• FRÉCHET-HOEFFDING bounds W(u, v) and M(u, v) are universal for all 
Copulas: W(u, v) ≡ max(u + v – 1, 0) ≤ C(u, v) ≤ min(u, v) ≡ M(u, v). 
If dependence between X and Y is unknown, copulas W and M provide 
bounds for  Monte Carlo simulation and sensitivity analyses. 

• For an excellent introduction and overview see: Roger B. Nelsen, 
“An Introduction to Copulas” (2nd Edition), Springer 2007. 
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5. Description of statistical dependencies by 
Copulas - Examples 

   

    

lower FH-bound W              independence Copula Π = u⋅v     upper FH-bound M  

   Gauss-Copula CG         Joe-Copula CJ              Copula C12                  Copula C19  
  (scatterplots of CG, CJ, C12 and C19 for KENDALL concordance coefficient τ = 0.59) 
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6. Conclusions and recommendations 

1. Aleatory and epistemic uncertainties (variability and incertitude) 
of model parameters should be analysed/specified separately. For 
computer simulations they should be modelled with appropriate 
mathematical methods that are adequate to the available evidence. 

2. Bayesian PT is very useful for assessing incertitude of distribution 
parameters estimated on the basis of sampling data. However, use 
of probabilistic terms for subjective degrees of belief concerning 
pure epistemic uncertain parameters is questionable. 

3. Evidence Theory appropriately allows for expressing subjective 
degrees of belief by two measures, Belief (Bel) and Plausibility 
(Pl), also quantifying the degree of (partial) ignorance. 

4. Modelling of statistical dependencies between random variables 
by Copulas is recommended. Research seems to be necessary with 
respect to dependencies between epistemic uncertain parameters.  
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