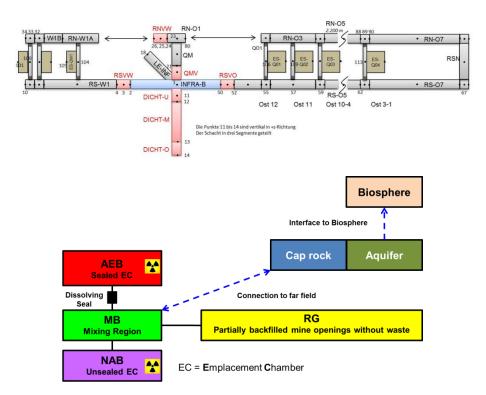
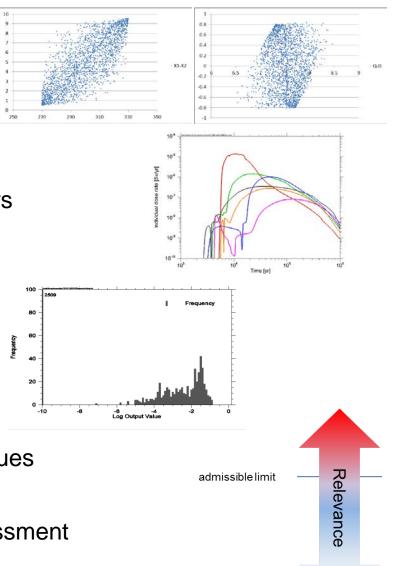

Overview of advantages and drawbacks of different methods for sensitivity analysis in the context of performance assessment


Dirk-Alexander Becker, GRS 28 October 2014 5th IGD-TP Technical Exchange Forum 28-30 October 2014, Kalmar, Sweden

Repository PA models

- Repository for SF and HLW in clay
 - diffusive radionuclide transport
 - sorption in clay
- Repository for SF and HLW in rock salt
 - convergence, closure of mine parts
 - advective and diffusive RN transport
 - possibility of zero output
- Repository for LILW in rock salt
 - convergence, gas production
 - dissolving seal: change of model behaviour after failure



Typical properties of repository PA models

- Parameter dependencies
 - not always describable as correlation
- Highly non-linear model behaviour
 - changing direction of influence of parameters
 - (quasi-)discontinuities
- Wide span of output distribution
 - several orders of magnitude, zero possible
 - non-Gaussian output distribution
- Different relevance of high and low output values
 - low values are of minor interest
 - high values are relevant for the safety assessment

Graphical sensitivity analysis (selected methods)

Method	Advantages	Disadvantages
Mean rank plot	 All parameters in one figure Eye-catching prominence of important parameters Good for first orientation/screening 	 Little information about kind of influence Tends to underestimate non-monotonic influence Unable to show time development
CSM plot	 Provides information about direction of influence Can detect non-linear and non- monotonic influence Colour-coding for time-development or parameter distinction 	 Tends to look confusing with many parameters in one figure
Scatterplot	 Reveals complex model behaviour and parameter influences Good to improve model understanding Additional information can be colour-coded: dominating radionuclide other parameter value ? 	 Only one parameter per figure Unable to show time development

Computational sensitivity analysis

Method	Advantages	Disadvantages
Correlation-/regression-based (without rank transformation)	 Easily understandable concept Computationally cheap Provides "true" quantitative information about linear influence of parameters Detects direction of influence 	 Assumes linear relationship Inadequate for models with low R² Can yield misleading results
Correlation-/ regression- based (with rank transformation) w^{0}_{1}	 Better adequate for nonlinear models Detects direction of influence 	 Assumes monotonic relationship Loss of quantitative meaning due to rank transformation Inadequate for models with low Rank-R² (e.g.: many zero runs)
Variance- based	 Adequate for all kinds of models Provides "true" quantitative sensitivity measure Can provide information about orders of parameter influence (interaction) 	 Mathematically demanding concept Computationally expensive (in general) Requires high number of model runs No information about direction of influence

Variance-based sensitivity analysis (selected methods)

Method	Advantages	Disadvantages
Sobol'	Provides sensitivity indices of any order	 Requires specific sampling Samples are not extendable Computationally expensive and time- consuming
FAST/EFAST	Computationally cheap	 Requires specific sampling Samples not extendable No parameter correlations Poor coverage of parameter space Provides only first order and total order (EFAST) sensitivity indices Poor performance on models with discontinuities
SDP	 Allows any sampling scheme Extendable samples Seems to provide reliable results 	Complicated theoryVery computationally expensive
EASI	 Allows any sampling scheme Extendable samples Seems to provide reliable results Fast and computationally cheap 	 Less accurate for higher-order sensitivity indices

Sampling (selected methods)

Method	Advantages	Disadvantages
(Pseudo-)Random sampling	 (Ideally) statistically independent sample points Allows proper statistical statements Best adequate for uncertainty analysis 	 Typical clustering leads to inhomogeneous coverage of parameter space Requires high sample sizes for sensitivity analysis
Stratified sampling Latin Hypercube sampling (LHS)	 More homogeneous coverage of parameter space 	 Loss of statistical independence of sample points Does not seem to be significantly superior to random sampling for computational sensitivity analysis in practice
Quasi-random sampling Low discrepancy sequences (LpTau)	 Optimised for homogeneous coverage of parameter space Performs significantly better than random sampling/LHS for all kinds of computational sensitivity analysis stable results with fewer runs 	 No (or little) random influence Inadequate for proper uncertainty analysis

Thank You for Your Attention!

5th IGD-TP Technical Exchange Forum, 28-30 October 2014, Kalmar, Sweden