## Radioactive Waste Management



## Developing understanding of disposability of heat generating spent fuels:

Key challenges & possible compliance needs

IGD-TP EF7 - Working Group 4 'Spent Fuel Characterisation'

Robert Winsley & Cristiano Padovani

25th October 2016



#### Overview

- UK inventory of high heat generating waste
- UK thermal dimensioning capability
  - Example application to support and optimise GDF designs and our operational schedule
- UK capability to understand likelihood and consequences of postclosure criticality
  - Example application to demonstrate low likelihood of post-closure criticality
- Brief mention of our UK consequence of criticality modelling capability
- Possible compliance requirements/needs to underpin SF disposal



## Inventory

UK inventory of high heat generating waste (HHGW) includes:

- vitrified High Level Waste from SF reprocessing
- Advanced Gas cooled Reactor (AGR) SF that is not reprocessed
- SF from Sizewell B (PWR SF)
- New build SF from potential UK new build programme (NNB SF)
- "Exotic" fuels (includes fuels from research and defence activities)
- Magnox SF (if not reprocessed)
- mixed-oxide (MOX SF) (from potential future re-use of UK plutonium)
- UK GDF programme not yet site specific, research therefore considers waste disposed of in three illustrative host rocks: Higher Strength Rock (HSR), Lower Strength Sedimentary Rock & Evaporite



Radioactive Waste Management

### Focus on SF disposed of in HSR

#### SF disposal concept in HSR



## SF disposal challenges:

- 1. Thermal management
  - Conservative to assume all SF at maximum credible burnup
- 2. Demonstrating criticality safety
  - Conservative to assume that all fuel is 'fresh fuel' or non irradiated
- Both of these 'challenges' likely yield compliance/GDF acceptance criteria
  - particularly if you want to optimise you facility or relax conservative assumptions



#### **Thermal management**



## Thermal Dimensioning Tool (TDT)

RWM needed to be able to:

- Understand the influence of heat on engineered barrier systems for a range of generic disposal concepts being considered in the UK
- Advise waste producers of any thermal constraints that may impact on the packaging of these wastes

Thermal Dimensioning Tool (TDT) has been developed to:

- perform thermal dimensioning for a range of HHGW disposal concepts
- use analytical/semi-analytical expressions to solve relevant heat conduction problem when allied to simple geometrical configurations of the waste (fast and easy to use)
- complement (and validated by) more detailed models



#### Inputs required for thermal dimensioning

#### disposal concept

- arrangement
- buffer material
- disposal container geometry
  - inventory
  - decay storage and heat output

#### host rock type

- thermal conductivity and Specific Heat Capacity
- spacing of deposition tunnels and disposal containers within tunnels
- repository depth



## Example output of TDT: PWR SF in higher strength rock

Disposal container spacing at 6.5m centres and 25m tunnel spacing

Gives a buffer temperature of <100°C for legacy PWR SF





#### TDT support for higher strength rock designs

500m long disposal tunnels

with 25m tunnel spacings

- 6.5m container spacings for legacy PWR SF
- Needs to increase to 9.5m container spacings for MOX and NNB SF
- based on a 100°C buffer temperature limit

#### **TDT peak temperature and time**

|                                 | Legacy HHGW                                                      | MOX                                                                              | NNB SF                                                                           |
|---------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                 | PWR emplaced at 2080                                             | Emplaced at 2131                                                                 | Emplaced at 2145                                                                 |
| Higher strength rock            | 94°C                                                             | <b>100°C</b>                                                                     | <b>91°C</b>                                                                      |
|                                 | @56 years                                                        | @237 years                                                                       | @100 years                                                                       |
| Radioactive Waste<br>Aanagement | 4x PWR SF<br>assemblies per<br>disposal container<br>at 55GWd/tU | 1x MOX SF assembly<br>per disposal container<br>at 50GWd/tU (initially<br>8% Pu) | 3x UK EPR or<br>AP1000 SF<br>assemblies per<br>disposal container<br>at 65GWd/tU |

#### TDT to inform waste emplacement timings



These are indicative timescales and may be subject to change



### TDT to develop an overall thermal

#### management approach



## Also applied the capability to alternative disposal concepts





## **Criticality safety**



# GDF evolution and the possible development of critical systems

- The GDF will include disposal of sufficient fissile material that could hypothetically under certain conditions lead to a criticality
- Criticality safety ensured during transport & operations by setting package safe fissile masses and/or by exclusion of moderator
- These controls also ensure criticality safety for a long period following facility closure
- However, conditions in a GDF will evolve, therefore to demonstrate continued post-closure criticality safety, we need to understand:

  under what conditions could criticality occur and what is the likelihood of these systems developing;
  what are the local consequences if critical systems do develop; and
  could hypothetical critical events degrade GDF post-closure performance.

  Radioactive Waste Management

## **Conditions required for criticality**

 Example criticality handbook curve for homogeneous spheres of optimally moderated fissile material in bentonite (highly conservative as it shows minimum concentration & mass required) 10000



- Likelihood work considers possibility of reaching critical region ( $k_{eff} = 1$ )
- Consequence work focuses on how criticality would progress & what the local consequences would be IF we reached these accumualtions (k<sub>eff</sub> ≥1)

## **Criticality scenario construction**

- At disposal, all packages will be significantly sub critical
- Consider processes and events that could lead to material reconfiguration & accumulation under evolving GDF conditions
- Identify criticality scenarios:
  - 1) in-package
  - 2) accumulation outside of a single package
  - 3) accumulation from multiple packages



## **Assessment methodology**

#### Likelihood of criticality

- Probabilistic model of barrier evolution & Pu and U migration (GoldSim)
- Define parameter distributions that capture uncertainties
- Sample over multiple realisations (1000)



 Compare calculated fissile material concentrations & masses in different regions with minimum values required for criticality



#### Example likelihood results – SF, in package scenario

 Volumes of package materials & how close the package gets to criticality (a k<sub>eff</sub> of 1) for PWR SF package for a typical realisation (1 of 1000)

![](_page_19_Figure_2.jpeg)

- Cannot have criticality until water enters a container
- Water cannot enter until Cu has corroded (by this time Pu decayed to U)
- Most U remains in solid form, some advected out of container over 10<sup>8</sup>yrs
- Highest  $k_{eff} = 0.5$ , significantly sub-critical (note effective enrichment of 1.2% <sup>235</sup>U)

#### Likelihood results summary

| Waste type                                   | Scenario                                                                                                                                                                                                                                                                                                                 |                                           |                                           |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|
|                                              | In-package                                                                                                                                                                                                                                                                                                               | Accumulation outside<br>of package        | Accumulation from<br>multiple packages    |  |
| PWR SF<br>(disposed<br>of in HSR<br>geology) | Only credible for<br>fresh/low burn-up fuel<br>Not credible if assume PWR<br>SF of typical burn-up<br>Criticality possible following<br>failure of fresh PWR fuel<br>container (although fresh<br>fuel disposal is not<br>expected)<br>Earliest Cu container failure<br>assumed to occur after<br>2x10 <sup>5</sup> yrs. | Not credible under the conditions assumed | Not credible under the conditions assumed |  |

![](_page_20_Picture_2.jpeg)

#### PWR SF in package flooding scenario

- Flooding of package containing PWR fuel considered (following failure)
- Fresh fuel assumed (as worst case) for disposal

![](_page_21_Figure_3.jpeg)

- For fresh fuel, criticality possible with water ingress of ~11kg (~30cm of flooding)
- As irradiation of fuel increases, possibility of criticality reduces
- At burn-up of >35 GWd/Te fuel remains sub-critical

![](_page_22_Figure_0.jpeg)

#### Conclusions

#### **Thermal management**

- A thermal dimensioning tool (TDT) has been developed
  - $\odot\,$  TDT can inform the design of GDF
  - TDT can inform overall thermal management strategy

#### **Criticality safety**

- Probabilistic model developed to evaluate the likelihood of post-closure criticality scenarios
  - re-arrangement of materials in a waste package, accumulation of fissile material in the barriers outside of a waste package & accumulation from multiple packages
  - PWR SF remains sub-critical under flooded conditions. Accumulation of fissile materials from failed PWR SF containers insufficient to support criticality (assuming burn-up)
- Consequence of criticality models also developed (results not discussed here)

#### **Possible compliance requirements**

- Directly measure heat generation for sealed SF disposal containers?
- Fissile assay of sealed SF containers to demonstrate a minimum burnup?

![](_page_23_Picture_13.jpeg)

#### Acknowledgements

#### **Galson Sciences**

Tim Hicks and Tamara Baldwin

#### **Amec Foster Wheeler**

David Holton, Robert Mason and Paul Smith

#### RWM

Neil Carr and Martin Cairns

Reports that document these work stream discussed can be found at: <u>www.nda.gov.uk/publications/</u>

Subscribe to RWM's newsletters at: <a href="http://www.nda.gov.uk/rwm">www.nda.gov.uk/rwm</a>

robert.winsley@nda.gov.uk

![](_page_24_Picture_10.jpeg)