GTS Phase VI

HotBENT High Temperature Bentonite Project Ideas

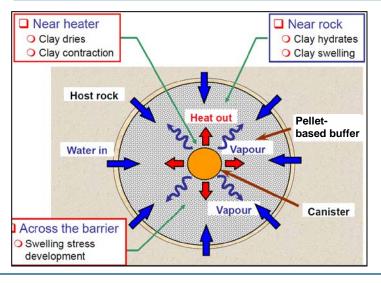
Studying the effects of high temperatures on clay buffers/nearfield

Florian Kober (Nagra, on behalf of interested parties)

IGD-TP Exchange Forum, Cordobá; 25/26 October 2016

HotBENT Motivation to study THMC behavior under high T

- Thermal limit is an important design and cost-optimisation parameter:
 - repository footprint
 - storage time at the surface
- A higher thermal limit is especially beneficial for the:
 - disposal of dual-purpose canisters
 - disposal in host rocks with high background temperature (steep geothermal gradients)
- Bentonite exposed to much higher temperature → a proof of robustness is needed from a safety point of view → optimal and shared allocation of resources should be pursued
- Bentonite behaviour is a common thread → In order to do so a substantial database and experience still needs to be gathered which is likely to be an international multi-annual exercise
- Previous or running higher temperature experiments have been only up to < 150°C (LOT, ABM → 130 °C, PEBS/HE-E → 140 °C, TBT ~ 150 °C)


HotBENT What to expect in the buffer for T > 150 °C

- Due to the high temperature it is expected that the following physicochemical effects will occur:

 Laboratory scale
 - cementation possibly affecting mechanical properties
 - illitization (under certain conditions, e.g. high potassium concentrations) affecting mechanical properties (reduced swelling, increased hydraulic conductivity and diffusivity)
- Due to the strong thermal gradients:

Large scale (Mock-up/URL)

- complex moisture transport process, including convection of vapor
- delayed saturation
- heterogeneous, time-dependent density distribution (differential swelling)

 Numerical models developed, or being under development, can be used to simulate the thermal period of a repository, but database for T > 150 °C limited (laboratory) or non-existent (large scale)

HotBENT - Kickoff Meeting – gathering and formulating the interests

HotBENT Kickoff Meeting (Baden, CH, Feb 12th, 2016):
 "HotBENT - Studying the effects of high temperatures on clay buffers / nearfield - Brainstorming"

Interested / participating organizations

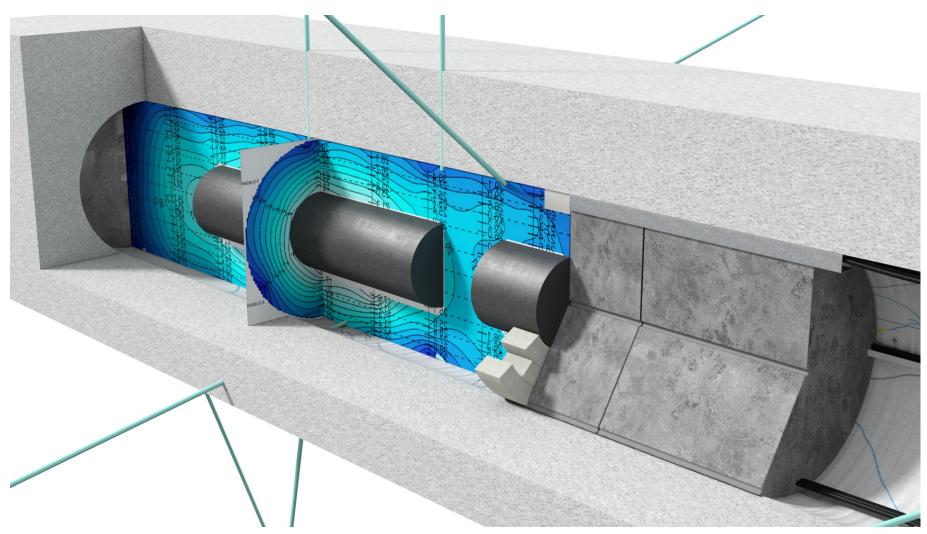
And various interested universities: EPFL, UdC, KIT, CTU, ..

HotBENT Aims (from first meeting)

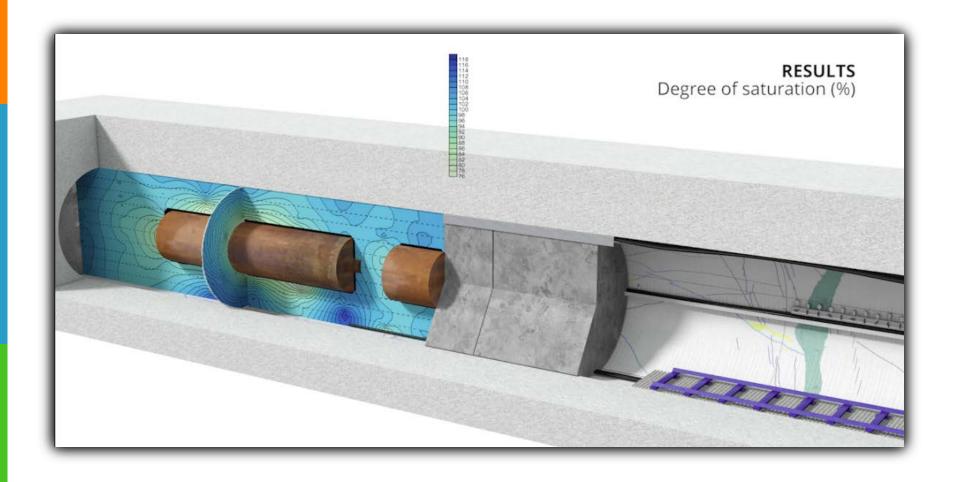
- Increase data base on buffer / host-rock performance under high T (up to 200°C and demonstration at realistic scales/conditions → upscaling) VS process understanding
- Broad interest in: what are the T- limits (max) to assure safety function of buffer (and host rock) ...
- Need of repository optimisation with respect to design, space and costs ...
- Compare different materials, concepts/designs, boundary conditions (e.g. types of bentonite and canister materials, water chemistries, temperatures, ...)
- Evaluation of microbial activities / corrosion (e.g. buffer/canister)
- Integrating of modelling (e.g. THMC) and lab activities (and also mock-up experiments)
- Availability of data and samples must be possible not only after 20 years, preferred are ~5 years ... → develop and implement suitable monitoring/sampling strategies

HotBENT - Potential location - GTS, FEBEX-gallery

- At Grimsel Test Site (GTS)
 - Old/former FEBEX-DP tunnel (70 m long, geologically and hydrologically well characterized gallery, multiple boreholes,...)
 - Availability of GBM and bentonite blocks MX80
 - Auger machine



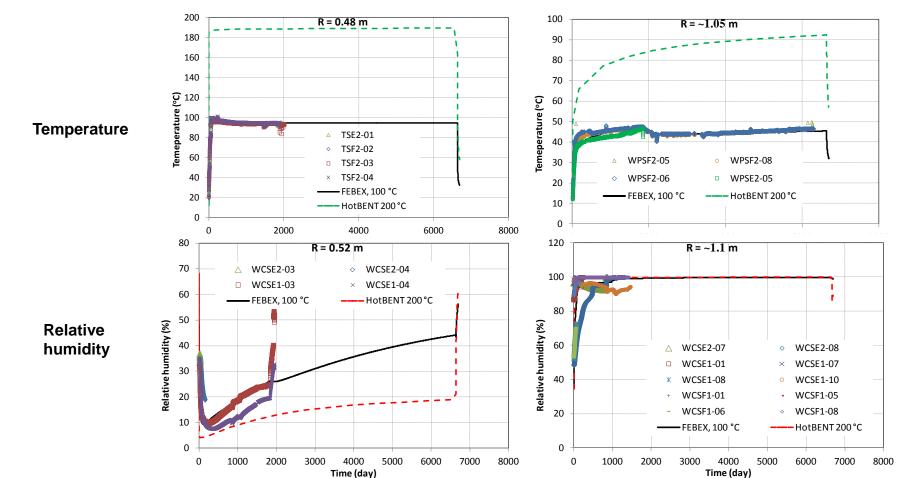
HotBENT - FEBEX gallery – well characterized boreholes



Water content

Data from: Villar et al.(2016) FEBEX-DP: Onsite determinations report. NAB 16-012

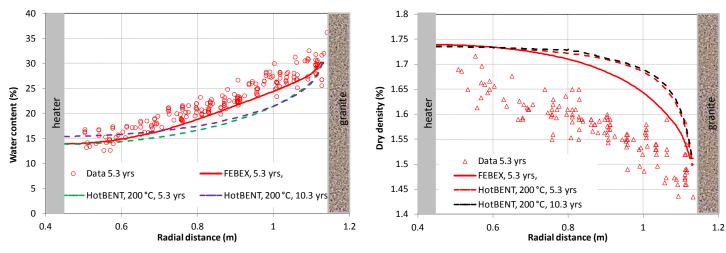
HotBENT since ISCO 2015 (4) - FEBEX gallery - onsite analysis



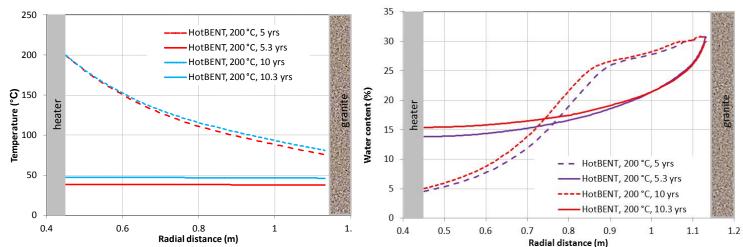
NAB 16-012, Villar et al.

HotBENT - Scoping calculations

Comparison with FEBEX modelling and data

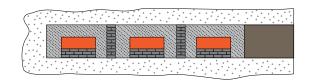

Liange Zheng & Jens Birkholzer, LBNL

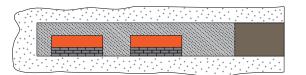
HotBENT - Scoping calculations

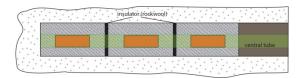

Water content & Dry Density

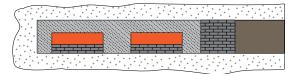
AFTER COOLING

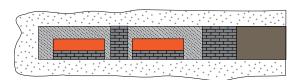
Observations: After 10 years, the majority part of bentonite is still unsaturated.

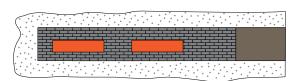


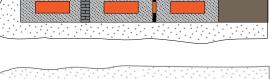

Observations: HotBENT undergoes significant re-distribution of moisture during the cooling period

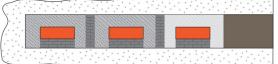

Liange Zheng & Jens Birkholzer, LBNL

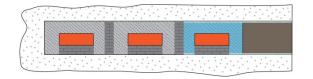


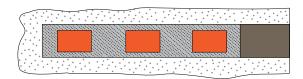

HotBENT – Possible Designs



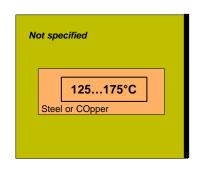






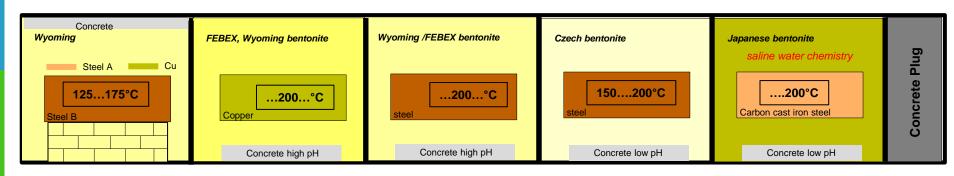


Possible set-ups


- - -

HotBENT – Potential Modules

Module 6


Module 1

Module 2

Module 3

Module 4

Module 5

Not to scale

To be run for 5...10...15 years

HotBENT – Initial "Designs" for first very preliminary cost estimates

"classic" model

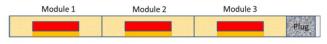
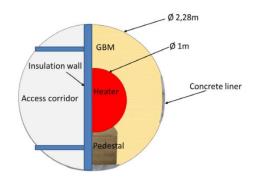
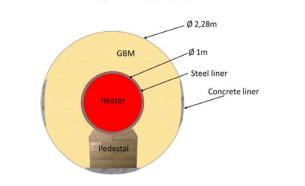



Figure 3: Classic arrangement


"half-tunnel"/"half-pipe" model

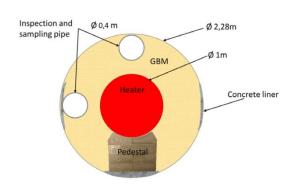

"HE-E type" model

Figure 5: HE-E type arrangement

"long-sampling-pipe" model

HotBENT - Next Actions

- Technical refinements for further design optimizations on
 - General risk assessment, project risks and risk mitigation
 - Monitoring at high temperatures
 - Material evaluation (bentonite, heater, ...)
 - Gas/steam/vapor-evolution and risk of overpressure, interaction with hydrosphere, boiling effects
 - Sampling and sampling techniques
 - Artificial hydration (compositions) options and limitations

- ...

thank you for your interest

HotBENT - timeline (proposal)

2016	2017								2018					2019	2020	2021	2022	2023	2024	2025	
Oct Nov Dec	Jan Feb Mar	Apr	May	Jun	Jul Aug	Sep O	t Nov	Dec	Jan	Feb Mar Apr May	Jun Jul Aug	Sep	Oct No	v De	C						
Conceptu and mo (bud	delling	Formalise participation					ent	Experiment construction			Experime			ient ru	ıning/ı	monite	oring				
6 mg	onth	2 m	onth		6	6- 8 moi	nth			7 mon	nth				5 years	(>20	23)			1-2	yeras

