

British Geological Survey Gateway to the Earth

Flow in saturated bentonite under elevated temperatures

Jon Harrington, Katherine Daniels,

Stephanie Zihms, Andrew Wiseall

and the Fluid Processes Research Laboratories at the British Geological Survey.

IGD-TP Meeting; 25th-26th October 2016; Cordoba, Spain.

© NERC All rights reserved

Laboratory experiments – stress and porewater

- Each temperature increment induced a sharp increase in total stress that gradually relaxed to a well-defined asymptote.
- ➢ Up to ~120°C, there was a positive correlation between the maximum total stress value and the temperature step.
- In test 1 the asymptotic average radial stress value decreased for each temperature increase up to 120°C.
- In test 2 above 150°C both axial and radial load cells showed a decrease in total stress value.

>Bentonite experienced a thermally induced consolidation, reducing the ease with which fluid migrated through the sample.

© NERC All rights reserved

Laboratory experiments – thermal influence on permeability

- Isotropic test flowrate data
- Spikes in outflow accompany increases in temperature, that decay to a constant outflow value
- Decreases in temperature correspond with spikes in inflow

Temperature (°C)

- Above 60-80°C, the permeability decreases as the temperature increases
- Effect more pronounced in the isotropic tests
- Complicated by thermal compliance of the constant volume pressure vessel

1.0E-20

8.0E-21

6.0E-21

4.0E-21

2.0E-21

0.0E+00

0

Permeability (m²)

- Strong coupling between the bentonite and the THM behaviour
- Expect this to be exacerbated for gas flow
- Cation exchange facilitated through corrosion of steel or alteration of the bentonite affects the bentonite behaviour
- De-ionised water is used in the experiments to date. The use of synthetic ground water may demonstrate a stronger THMC coupling

Summary

- > The effect of temperature on gas permeability is an important consideration
 - Preliminary gas flow testing started
 - Too early to draw conclusions
 - Gas is likely to be strongly THM sensitive

Publications:

- Daniels, K. A., Harrington, J. F., Zihms, S., and Wiseall, A. Bentonite permeability at elevated temperature. *Geosciences, submitted*.
- Zihms, S., and Harrington, J. F., 2015. Thermal cycling: impact on bentonite permeability. *Mineralogical Magazine*, **79** (6), 1543–1550.