

Overview of Cold Spray Technology

Heidi Lovelock IDG-TP 7th Exchange Forum Cordoba, Spain 25th October 2016

Materials Joining and Engineering Technologies

TWI Limited

- Research & Technology Organisation
 - Welding and joining
 - Materials performance
 - Corrosion
 - NDT
- Established in 1946
- Independent
 - Not government funded
 - No shareholders; any profit is used to build/maintain capability
- Nuclear pedigree

TWI Headquarters at Granta Park, Cambridge

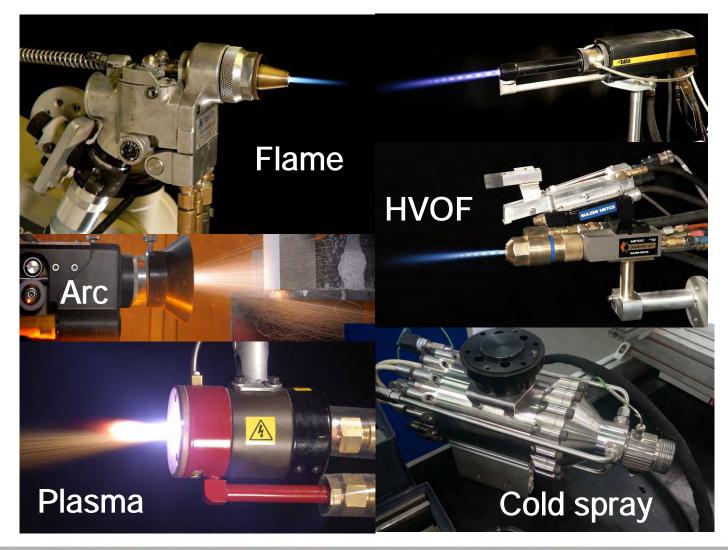
■ ≈£80m turnover p.a.

- \sim ≈700 Single Client Projects
- ≈50 Joint Industry Projects (JIPs)
- ≈70 Core Research Projects
- ≈65 Collaborative Projects
- ≈900 staff (≈550 engineers)

• 700 Industrial Members

- 4,500 locations in 80 countries
- Over 15,000 visitors per annum

TWI influences over 120 International Codes and Standards



The Thermal and Cold Spray Section

Materials Joining and Engineering Technologies

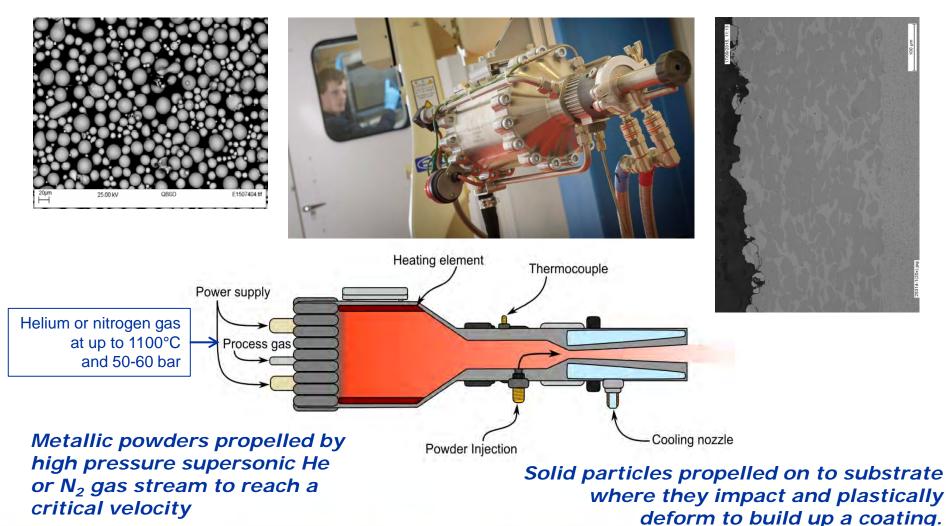
Ten different thermal & cold spray systems (all commercially available)

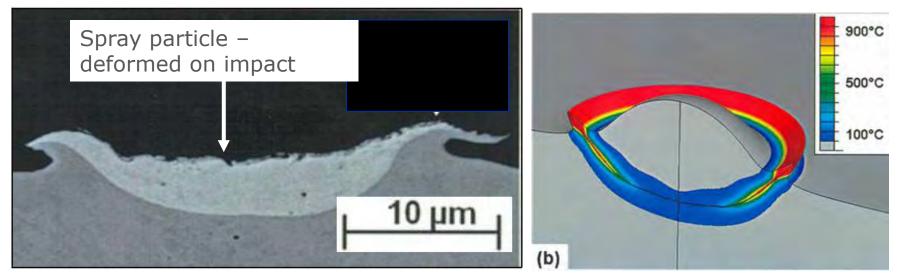
TWI

Four spray booths, two of which can combine to form one large booth (7.5m long x 6m deep x 4m high)

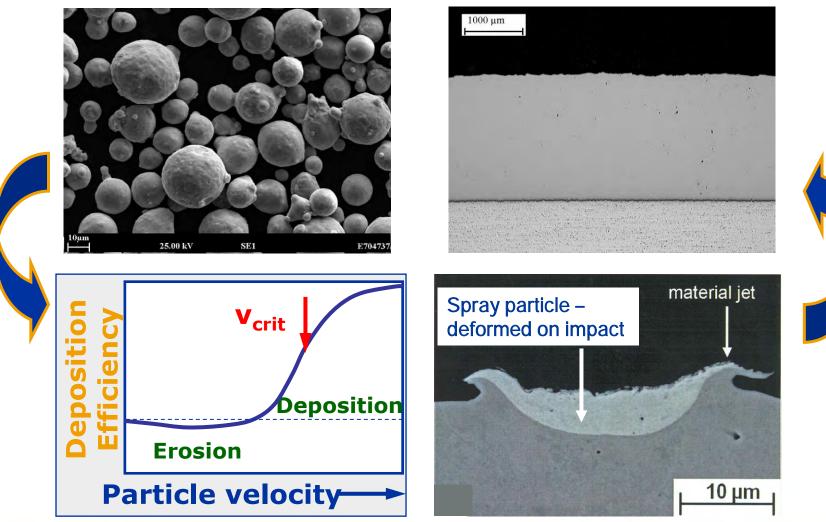
Impact Innovations 5/11 – 6/10 Cold Spray System

TWI Large mechanised grit blasting room

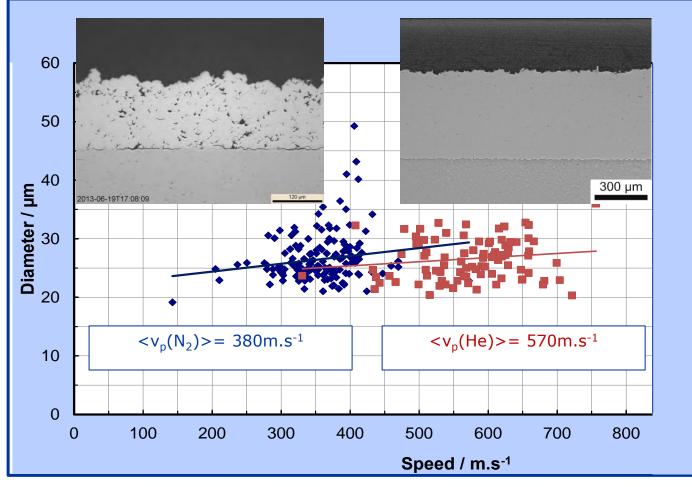



Materials Joining and Engineering Technologies

TWICold Spray:A solid state deposition process

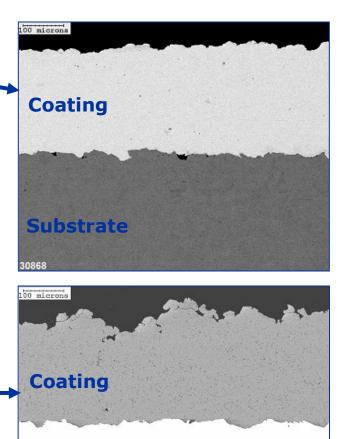

Cold spray principle

- Localised, transient adiabatic shear instabilities at the interface:
- Kinetic energy converted to deformation and thermal energy
- Rapid, highly localised, transient temperature increase at interface \rightarrow drop in yield strength at interface (YS=f(T))
- Brief and highly localised plastic flow of particle and substrate leads to bonding



Critical Velocity: A key concept in cold spraying

Powder particle velocity (ms⁻¹) He vs N₂ (CGT Kinetiks[®] 4000/47)



Typical cold spray coatings

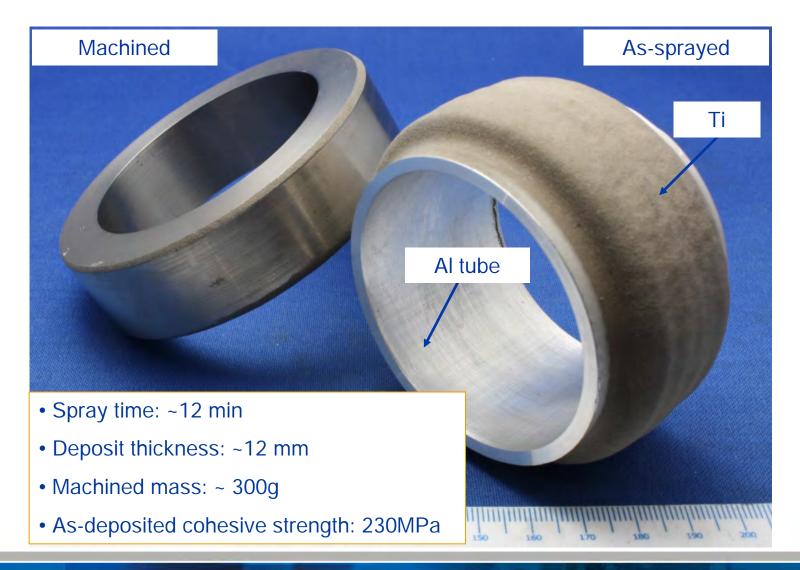
- Cu coating –
- Oxygen level, wt%
 Powder 0.05
 Coating 0.05

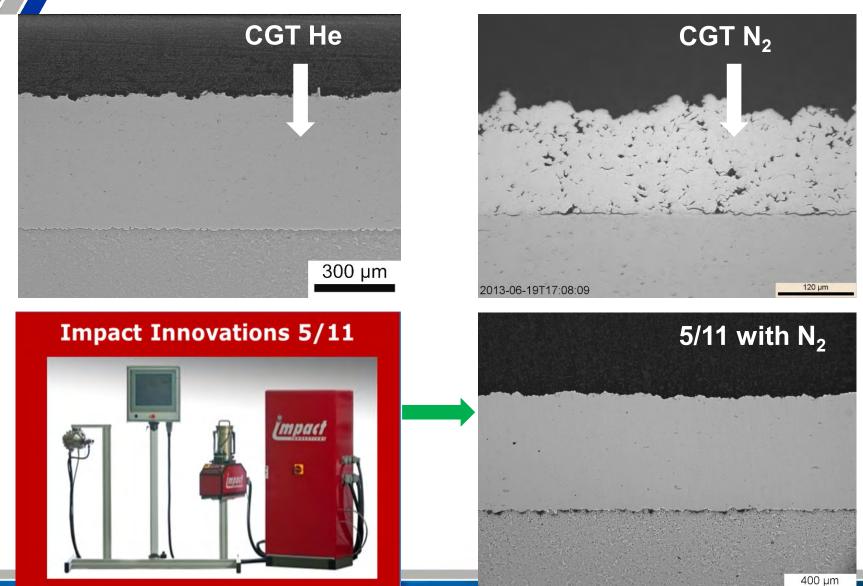
There is usually minimal oxidation of the powder in cold spraying

- Al coating
- Oxygen level, wt%
 Powder 0.20
 Coating 0.20

Substrate

Cold Sprayed Cu-Sn on Al


Spray-Formed Ti

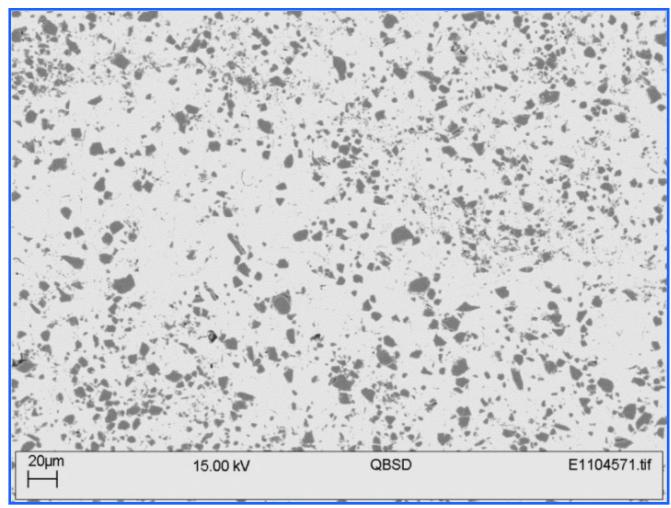


Spray-Formed Ti

Cold Sprayed Alloy 718

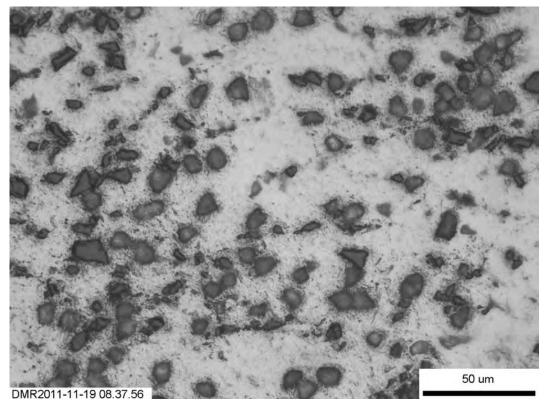
Oxygen pickup during deposition

System	Powder	Р	Temp.	Thickness (avg.)	Porosity (avg.)	O ₂	Bond strengt	cohesive
Kinetiks [®] 4000/47	тwı	40 bar	800°C	≈ 150 µm	3.6-4.0%	0.03% (300 ppm)	28 MP	a n.d.
Kinetiks [®] 8000/52	SM	40 bar	1000°C	≈ 130-145 µm	2.0%	0.05% (500 ppm)	>70 MP	Pa n.d.
PCS- 1000	PG (N ₂ gas)	50 bar	1000°C	≈ 715 µm	1.8%	0.08-0.09%	Disbonde	ed n.d.
Impact	ТШ	46 bar	1000°C	≈ 700-740 µm	0.3-0.9%	(800-900	34 MP	a 289 MPa
5/11	IMP	46 bar	1000°C	≈ 585-610 µm	0.6-0.8%	ppm)	>72 MP	a 266 MPa
Powders were 300 ppm. There is up to 600 ppm oxygen pickup during coating deposition with 1000°C N ₂								


Oxygen pickup during deposition

System	Powder	Р	Temp.	Thickness (avg.)	Porosity (avg.)	O ₂	Bond strength	Tensile cohesive strength
Kinetiks [®] 4000/47	TWI	40 bar	800°C	≈ 150 µm	3.6-4.0%	0.03% (300 ppm)	28 MPa	n.d.
Kinetiks® 8000/52	SM	40 bar	1000°C	≈ 130-145 µm	2.0%	0.05% (500 ppm)	>70 MPa	n.d.
PCS- 1000	PG (N ₂ gas)	50 bar	1000°C	≈ 715 µm	1.8%	0.08-0.09% (800-900	Disbonded	n.d.
Impact	тwi	46 bar	1000°C	≈ 700-740 µm	0.3-0.9%		34 MPa	289 MPa
5/11	IMP	46 bar	1000°C	≈ 585-610 μm 0.6-0.8%	ppm)	>72 MPa	266 MPa	
Powders were 300 ppm. There is up to 600 ppm oxygen pickup during coating deposition with 1000°C N ₂								

Marrocco *et al*, **Proc. ITSC 2006** p.265-270: HVOF-deposited Alloy 718 contains ≈0.26% oxygen


Al-B₄C composite NucleoStore[™] coating

20 vol% B₄C in an aluminium matrix

Al-B₄C composite NucleoStore[™] coating

Almost unlimited thickness

Al-B₄C composite NucleoStore[™] coating

Property	BORAL [®] Composite	BORTEC [®] MMC	TWI NucleoStore™			
Description	Flat shapes fabricated	Flat, rolled plates of metal-	An MMC coating that			
	from 1100 Series Al alloy	matrix composite	can be deposited onto			
	plates, separated by a	consisting of Al alloys (or	a wide variety of			
	core of AI + B_4C powder	Al) containing B ₄ C particles	fabricated metal shapes			
Minimum thickness	1.905 mm	1.905 mm	≈ 200 µm			
Maximum	6.858 mm or more	9.525 mm or more	Potentially no limit.			
thickness						
Max %B ₄ C by mass	≈ 61% in the core	≈ 32%	Currently ≈ 18%			
Max %B ₄ C by	≈ 65% in the core	≈ 34%	Currently ≈ 20%			
volume						
Relative density	N/A	>98%	> 98%			
Tensile strength	≈ 10 ksi	21-31 ksi	> 16 ksi (> 110 MPa)			
approx.	(≈69 MPa)	(145-215 MPa)	Parallel to substrate			
Adhesion strength of NucleoStore [™] coating to AISI 316 S/S substrate: ≈ 23 MPa						
Adhesion strength of	≈ 18 MPa					

- Nuclear engineering experience
- Large scale, state-of-the-art cold spray facility
 - Can handle large parts (cranage)
 - Offline programming of coating toolpaths
 - Full process: Grit blasting, machining, coating, NDT
 - HIP consolidation
 - Laser assisted cold spray
 - Laser surface consolidation
- Full suite of coating evaluation and characterisation capabilities
 - Corrosion
 - Wear
- Highly experienced engineers and technicians

Contact Details

Heidi Lovelock CEng FIMMM

Section Manager: Surface Engineering

Tel: +44 (0)1223 899 000

E-mail: <u>heidi.lovelock@twi.co.uk</u>

Web: <u>www.twi-global.com</u>