Candidate Material Solutions for the Design of Nuclear Waste Storage Canisters

Stuart Holdsworth High Temperature Integrity Mechanical Integrity for Energy Systems

Candidate solutions for nuclear waste storage canisters Structure of presentation

- Background and Introduction
- Mechanical integrity
- Susceptibility to environmental damage and impact on geological barrier
- Large product-form fabrication
- Indicative costs
- Concluding remarks

Candidate solutions for nuclear waste disposal canisters

NAGRA canister review: Canister dimensions

- Disposal of spent fuel (SF)
 - > 5m long x 760mm ID, with t ≤ ~150mm (depending on material solution)
 - > Alternative configurations possible, but length is fixed
- Disposal of vitrified high level waste (HLW)
 - > 3m(1.5m) long x 450mm ID, with t ≥ 50mm (depending on material solution)
 - > HLW is typically in the form of cylinders 1.34m long x 430mm diam.

EMPA, SRH\IGDTPholdsworth.pptx,IGD-TP 7th Exchange Forum, Cordoba 25.Oct-2016

Candidate solutions for nuclear waste disposal canisters NAGRA canister review: Canister logistics

- Disposal of spent fuel (SF)
 - > 5m long x 760mm ID, with t ≤ ~150mm (depending on material solution)
 - > Alternative configurations possible, but length is fixed
- Disposal of vitrified high level waste (HLW)
 - Sm(1.5m) long x 450mm ID, with t ≥ 50mm (depending on material solution)
 - > HLW is typically in the form of cylinders 1.34m long x 430mm diam.

Candidate solutions for nuclear waste disposal canisters NAGRA canister review: Candidate material solutions

- Carbon steel (with corrosion allowance)
- Copper shell with internal cast iron support (KBS-3)
- Copper (or nickel alloy) coating of carbon steel
- Titanium or nickel alloy shell with carbon steel support
- Ceramics

Candidate solutions for nuclear waste disposal canisters NAGRA canister review: NAB-14-90 evaluation categories

- Mechanical integrity
 - Load cases: handling, disposal

Environmental damage

- Short-time' aerobic (dry) phase;
 'Long-time' anaerobic (moist) phase
- General corrosion, localised corrosion, microbial induced corrosion, stress corrosion and hydrogen induced cracking
- Impact on geological barrier
- Robustness of lifetime prediction
 - Very long time (>10,000y) corrosion damage predictions
- Fabrication
 - Canister manufacture, final sealing, inspection

Costs

> Development costs, unit costs

Candidate solutions for nuclear waste disposal canisters Stress state development

Candidate solutions for nuclear waste disposal canisters Defect integrity: Failure assessment diagram

Likelihood of failure ratios

Candidate solutions for nuclear waste disposal canisters

Defect integrity: Summary of mechanical analysis review Likelihood of failure ratios

SF Canister Load Case Scenario	Short Time	Long Time
	Time	Time
Crack depth, a	2mm	2mm
Carbon steel (770mm ID, 140/120mm thick)	0.21	0.00
Carbon steel (770mm ID, 100mm thick):	0.31	0.11
- Copper coated	0.14	0.28
- Ti Gr.7 clad	0.30	0.10
- Ni Alloy C22 clad	0.16	0.06
Carbon steel (770mm ID, 80mm thick):	0.40	0.41
- Copper coated	0.14	0.44
- Ti Gr.7 clad	0.39	0.37
- Ni Alloy C22 clad	0.21	0.23
Carbon steel (770mm ID, 50mm thick)	0.62	1.21
Ti Gr.2 (770mm ID, 100mm thick)	0.30	0.10
Ti Gr.2 (770mm ID, 80mm thick)	0.39	0.37
Ni Alloy C22 (770mm ID, 100mm thick)	0.10	0.06
Ni Alloy C22 (770mm ID, 80mm thick)	0.21	0.23
Al ₂ O ₃ /SiO ₂ (770mm ID, 100mm thick)	3.00	0.80
Al_2O_3/SiO_2 (770mm ID, 80mm thick)	3.50	3.03
SSiC (770mm ID, 100mm thick)	1.70	0.38
SSiC (770mm ID, 80mm thick)	2.00	1.69
	20	

VHLW Canister Load Case Scenario	Short Time	Long Time
Crack depth, a	2mm	2mm
Carbon steel (440mm ID, 50mm thick):	0.17	0.22
- Copper coated	0.14	0.44
- Ti Gr.7 clad	0.16	0.20
- Ni Alloy C22 clad	0.09	0.12
Ti Gr.2 (440mm ID, 50mm thick)	0.16	0.20
Ni Alloy C22 (440mm ID, 50mm thick)	0.09	0.12
Al ₂ O ₃ /SiO ₂ (440mm ID, 50mm thick)	1.23	1.20
SSiC (440mm ID, 50mm thick)	0.70	0.77

No consideration here of creep for copper and titanium solutions

Ri

Candidate solutions for nuclear waste disposal canisters Environmental damage

MATERIAL	GENERAL CORROSION		SUSCEPTIBILITY TO PITTING / CREVICE / IG CORROSION	SUSCEPTIBILITY TO MIC	SUSCEPTIBILITY TO SCC / HIC	H ₂ PRODUCTION
	Short-Time <i>(aerobic)</i> μm (100 y)	Long-Time (anaerobic) μm/a				Equivalent Anaerobic Corrosion Rate μm (10k y)
Carbon Steel	100-150	1-2	L/L/O	L	L/P	10
Copper (OFP)	~100	≤0.002	L/L/O	L	L/L	~0
Nickel Alloy C22	~0	≤0.02	L/L/O	L	L/L	~0
Ti-Gr.2	~0	~0.001	L/P/0	0	L/L	~0
Ti-Gr.7	~0	~0.001	0/0/0	0	0/0	~0
Ceramics: Al ₂ O ₃ /SiO ₂	~0	~0	0/0/P	0	L/0	~0
SiC	~0	~0	0/0/?	0	0/0	~0

In repository environments: 0 – Immune; L – Low probability; P – Possible

Long-time corrosion rates for the active alloys are relatively certain, being underpinned by evidence from archeological analogues. This is not the case for the passive solutions

Candidate solutions for nuclear waste disposal canisters

Fabrication/sealing/inspection

CANISTER MATERIAL	Метнор	COMMENTS
Carbon Steel thick walled cylinder (with corrosion allowance)	Forged	Well established technologies for forging, sealing (welding) and inspection; properties relatively well characterised
50mm thick outer OFP Cu container (KBS-3)	Forged Cu container with cast iron internal support/spacer structure	Solution already intensively researched and developed, uncertainties remaining concerning creep
5mm thick OFP-Cu coated carbon steel	Electrodeposited	Coated solution overcomes creep problems; thick Cu electrodeposits are well established technology
	Cold spray	Large piece quality; acceptable porosity is an issue?
5-10mm thick NiCrMo coated carbon steel	Laser cladding	Viable solution
	Electric arc wire (EAW)	Fast, but prone to high porosity
	HVOF	High quality but high process time (costs)
5-10mm thick Ti-Gr.7 coated carbon steel	Shrunk-on shell	Any process involving temperatures >500°C is avoided, liable to gas absorption and Fe contamination
	Explosion bonding	Established technology in petro-chem
	Cold-spray	Large piece quality; acceptable porosity is an issue?
Ceramic container: Al ₂ O ₃ /SiO ₂	Cast/sintered(hipped?)	Problems with mechanical properties and fabrication/ sealing/inspection (of large pieces)
SiC (SSiC, SiSiC, LPSSiC, RSiC, SiC _f /SiC)	Cast/sintered(hipped?); worldwide lack of large piece manufacturing capacity; sealing by laser (glass ceramic solders)	Better solution than Al ₂ O ₃ /SiO ₂ ; Problems with mechanical properties and fabrication/sealing/inspection (of large pieces); industry claims most problems could be resolved with appropriate (v. large) investment

Candidate solutions for nuclear waste disposal canisters Costs (indicative)

CANISTER CONCEPT	SF	DEVELOPMENT	HLW	DEVELOPMENT
	kCHF/unit	kCHF	kCHF/unit	kCHF
Carbon Steel thick walled cylinder (with corrosion allowance)	150-190	Largely complete?		
50mm thick outer OFP Cu container (KBS-3)	200-225	Largely complete?		
5mm thick OFP-Cu coated carbon steel (electrodeposited, with cold spray infill)	175-220	Largely complete?		
5-10mm thick NiCrMo coated carbon steel (laser clad)	(>275)	Petrochem experience		
5-10mm thick Ti-Gr.2 coated carbon steel	(>210)	Petrochem	(>90)	
5-10mm thick Ti-Gr.7 coated carbon steel	(>310)	experience	(>120)	
Al ₂ O ₃ /SiO ₂ container	-			
SiC container	-	(>120,000)	(25-80)	(>150)

For established technologies, prototype unit costs are typically x1.5 – x2.5 production unit costs

Candidate solutions for nuclear waste disposal canisters Concluding remarks

- Carbon steel with a corrosion allowance provides a relatively simple solution (properties, fabrication, sealing), but with a significant disadvantage in terms of H₂ generation and its potential influence on the geological barrier
- Copper coated carbon steel provides a viable alternative to the KBS-3 solution (50mm thick outer Cu cylinder), without the risk of long-time low creep ductility cracking, but with the potential risk of MIC
- NiCrMo alloy laser clad carbon steel provides an attractive solution, with no risk of creep, but with a cost implication and a potential risk of MIC
- Palladium containing Ti-Gr.7/Ti-Gr.17 sleeves shrunk-on to carbon steel provides an even more attractive solution, with no risk of MIC, but with an even more significant cost implication

> A shrunk on solution avoids any potential problems associated with creep

A ceramic container solution potentially solves the problems associated with environmental damage and impact on geological barrier, but presents significant challenges with mechanical integrity, fabrication, sealing, and the associated development costs

Candidate solutions for nuclear waste disposal canisters Potential work areas

- Ceramic canister development
- Mechanical analysis optimisation
 - Realistic load case definitions

