

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Implications of canister design & materials on closure welding for deep geological disposal canisters for high level nuclear waste & spent fuel

Chris Punshon

Power Industry Sector manager TWI Ltd chris.punshon@twi.co.uk

Materials Joining and Engineering Technologies

TWI TWI – An Extension of your Resources

- Research & Technology Organisation
 - Established in 1946
- Industrial Membership based
 - Effectively owned by Members and run by representatives from Member Companies
- Non-profit distributing
- Five UK locations and 13 international offices
- 900 staff

- Global drivers
- Spent fuel and high level waste
- Geological disposal
- Materials selection
- Long term integrity
- Closure welding
- Summary

Global Drivers

- Proliferation of nuclear power low C energy
- Nuclear Power Generation wastes
- (31 countries) expanding volumes
- Research reactors
- Medical isotopes
- Military waste
- Spent nuclear fuel (SNF)

4

Vitrified (high level)waste -reprocessing(HLW)

"Each country is ethically and legally responsible for its own wastes"

SNF and HLW

- 1000MW (1GW) nuclear reactor 27 tonnes of spent fuel/yr
- Reprocessed 3m³ vitrified waste
- 1000MW coal fired 400,000tonnes/yr of ash

Waste solutions

- Avoid
- Re-use
- Re-process
- Disposal
 - Deep sea
 - Off planet
 - Transmutation

International Consensus

Long Term Deep Geological disposal

The last 100k years

100,000BC Modern Homo sapiens in Omo, Ethiopia

30,000BC

Oldest known art

10,000BC

End of the last ice age

9

3,100BC Stonehenge complete

2016 AD

2,500BC Giza

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

28,000BC Neanderthals Extinct

Copyright © TWI Ltd 2016

TWI Geological disposal Strategy - Multiple barriers

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Copyright © TWI Ltd 2016

POSIVA/SKB - copper and cast iron Engineered barrier system

Courtesy SKB/Posiva

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Copyright © TWI Ltd 2016

National Projects

Nation	Favoured materials
Sweden	Copper/cast iron
Finland	Copper/Cast iron
France	Steel/ Alumina
Switzerland	Steel / copper
Japan	Steel
USA	Nickel Alloy/steel - dry storage
Canada	Copper/steel
S.Korea	Copper/cast iron
Belgium	Steel
UK	Copper/cast iron
Spain	Steel
Ukraine	Copper/cast iron

Others:-Germany Czech republic

Geology of Repository site

Canister Performance

- Containment and immobilisation
- Lithostatic pressure rock overburden
- Hydrostatic Ground water pressure
- Bentonite Swelling pressure
- Ice Load next ice age
- Local corrosion
- Long term corrosion
- Handling and emplacement
- Retrieval for re-use
- Legacy
- Identification

Canister Materials

- Ceramics
- Metals
- Composite coated metals
- Copper OFHC
- Cast Iron
- Steel plain carbon steel
- Stainless steel
- Titanium alloy
- Nickel alloy
- ODS alloys

Copper Corrosion Barrier

Manufacture of Iron Insert

Closure processes

- Bolting Gaskets
- Adhesives Durability
- Brazing Galvanic corrosion
- Thermal spray possibilities
- Welding
 - Fusion
 - Arc processes
 - Power beams
 - Solid state
 - Friction
 - Forge processes

Closure weld process requirements

- Robust simple
- Remote and automatic
- Radiation hard
- Proven
- Inspectable
- Repairable
- Low defect rate
- Sufficiently rapid
- Mechanical properties
- Corrosion performance
- Defect tolerant

Closure Weld characteristics

- Practical, implementable, inspectable
- Long term reliability
- Resistant to all potential failure mechanisms
- Mechanical properties avoid breaching
 Applied stresses
- Corrosion mechanisms
 - Material
 - Welding induced residual stress
 - Existing flaws
 - Environment
 - Hydrogen/radiation embrittlement

Welding induced Residual stresses

EB weld in steel – hoop direction as-welded and after PWHT

Figure **Error! No text of specified style in document.**-1 Predicted residual stresses midway along the 2 halves of the flat plate model in the a) as-welded condition and b) in the PWHT condition.

Electron Beam closure welding

Canister remote lid placing mechanism

Canister

Gun column

Canister lid

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

22 Copyright © TWI Ltd 2016

EB welding of copper

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Friction Stir Welding

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Friction Stir Welding (FSW) of 50mm Thick Copper

25

Copyright © TWI Ltd 2016

Canister closure welding - process selection

Electron Beam Welding

Mock-up welding demonstrations

27

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

C-Mn steel 190mm thick EB closure weld

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

TWIRWMC C-Mn steelweld 190mm wallthickness

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

EB welding cell

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

SKB Canister Laboratory

Yucca Mountain Emplacement strategy

Waste Package Design

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Alloy 22

- UNS N060220
- Nickel 56%, Chromium 22%, Molybdenum 13%, Iron 3%, Cobalt 2.5%, Tungsten 2.5-3.5%, Vanadium 0.35%
- Cost ~\$62k/tonne (1 can requires up to 10t)

TWI Solution anneal 1150 deg C + quench

38

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

TWI Canister fabrication & Closure welding

Full Diameter – short length closure trials

TWI

Alloy 22 closure weld - EB vs TIG

Multi-Pass GTAW Weld

Single-Pass RPEB Weld

41

	200	Travel Speed (mm/minute)	750	
	8	No. of Passes	1	
		Lid Weld Time		
	251.3	(in minutes)	8.4	

Comparison of Estimated Welding Times for GTAW and RPEB Welding for Alloy 22

Simpler closure weld

Site recommendation design

Current design

Potential RPEB designs

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

42 Copyright © TWI Ltd 2016

Corrosion Rate

As-welded residual stress

Longitudinal (weld direction) residual stress contour plots in the as-welded condition for the GTAW and RPEB weld samples

RPEB welding peak tensile residual surface stress ~75% less than GTAW

Local heating for residual stress control

As-welded

After local heating

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

45 Copyright © TWI Ltd 2016

RPEB Benefits

- Equal or better materials performance in terms of corrosion, metallurgical stability, and as-welded residual stress
- Welding repeatability and reliability
- Cost savings
- Hot cell operation

TWI Influenced by Welding process selection

- Reduced distortion minimum overstock
- Faster welding times (X30)
- Elimination of weld filler metal
- Reduced machining times
- More favorable distribution of residual stresses

Inspection

- Surface inspection critical
- Initiation of environmentally assisted cracking
- Volumetric inspection high static load
- Accidental damage
- Remote/automatic
- Radiation hard
- Phased Array UT
- Eddy current
- Radiography Linac

Automated UT inspection

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP

Copyright © TWI Ltd 2016

- Deep geological disposal of SF and HLW recognised most favourable option
- Material selection influence
 - geological conditions
 - activity of waste
 - lifetime requirements
- Canister Design & material profound influence on closure welding process selection & inspection methods
- Safe and reliable closure method essential for continuation of nuclear energy generation

IGD-TP 7th Exchange Forum (EF7) Cordoba 2016 CSP