

Excellence through innovation

IGD-TP 7th Exchange Forum

Canister Design

Objectives for today

- Give you something to consider
- What do you want your canister to do
- Understand how they are made
- Design to maximise efficiencies

Your Speaker?

Andrew McClusky – Owner & MD of BEP Surface Technologies Ltd

- **BEP has been an electro plating company since 1970**
- Specialise in plating Nickel, Copper & Chrome
- > Approx 40 employees, based in Manchester UK
- World leaders in Cu electroplating of large components/cylinders
- Research / Knowledge Transfer Activity:
 - optimisation & control of Cu layer composition
 - surface finish /morphology

Canister Design - Factors to consider?

- Size and shape of your fuel bundles
- Shielding required
- Corrosion resistance required
- Mechanical strength of canister
- Materials to be used
- Retrievability
- Geological conditions
- Method of manufacture

Pierce & Draw Copper Forging

Finishes with 7 tonne rough cast copper tube

Pierce & Draw Copper Forging

Machined in the bore to successfully insert the cast iron insert – 1 mm gap

Machined outside diameter, mainly cosmetic, however needs to fit in the emplacement machine

Both ends welded on

BEP's Electroforming method

- Bath of copper sulphate with additive system and then either
- Make a seamless tube on a mandrel OR
- Plate on to the insert no "gap"
- Rate approx. 1mm / day
- Remove shell of the mandrel or is finished plated canister
- > The hemi end !

How do we manufacture our rolls?

SURFACE TECHNOLOGIES LTD

Copper shell on a mandrel

Finished shells

Full size seamless shells

BEP's standard production shells for packaging industry

900mm dia X 2000mm face x 16mm thick

Note, perfect bore Minimal machining required of outside diameter

Trials for NWMO

NWMO initial study results

Table 1. Results obtained from testing of copper samples produced by electroforming using the five additives under study.

ADDITIVE ID	Compositional analysis - AMG					Mechanical analysis – WMT&R		
	O (ppm)	H (ppm)	C (ppm)	S (ppm)	P (ppm)	Grain size (mm)	m-hard (HV)	Elong. (%)
NWMO_01	13	1	75	2	< 2	< 25	103	33.4
NWMO_02	< 2	< 0.5	< 10	< 2	< 2	< 25	104	33.5
NWMO_03	95	14	112	36	< 10	< 150	105	26.1
NWMO_04	<1	< 0.5	< 10	12	< 5	< 260	93.9	41.6
NWMO_05	91	15	142	22	< 5	< 10 ? ⁽³⁾	218	10.2

Chemistry Specification

KBS -3

Oxygen tens of ppm Sulphur <12ppm Hydrogen <0.6ppm Phosphorous 30 – 100 ppm

Source SKB TR-10-14, Dec 10 page 32

Do we need phosphorous?

Electro forming spec

Oxygen	<1 - < 95
Sulphur	<2 - 40
Hydrogen	<0.5 - 15
Carbon	<10 - 142
Phosphorous	<2 - < 10

Mechanical Specification

KBS -3

Electro forming

Gain size	<360 µm		
Hardness			
Elongation%	>40		
Creep ductility %	>15		

Grain size	10 - 20µm
Hardness	100 – 200 HV
Elongation %	26 - 41
Creep ductility %	?

Forge Pierce & Draw

Electroformed Copper

Hot working Off site Large waste to be recycled Wasted energy "The Gap" Very thick, can it be reduced? Cold working On site Kg's not tonnes Copper plating is 100% efficient No gap or a gap Any thickness 2mm – 50 mm

Quick - a day

1mm per day

Advantages of Electroforming

- Choose your copper thickness
- Eliminate the gap
- If hemi end, only one seal
- Locate in the repository, under your control
- Minimal machining required
- Minimal waste
- Lights out operation
- Consistent small grain size aids ndt

Mock up electroplating plant

Thank you

Any Questions?

