IGD-TP WG 2: Canister Design

Cordoba October 25, 2016

Waste Canister for HLW and Spent Fuel

WG 2: Objectives

- Information exchange on approaches how to derive <u>design</u> requirements (regulatory, host rock specific, repository concept specific)
- Information exchange on <u>state of the art on waste canister</u> design, manufacturing and demonstration
- Information exchange on waste canister <u>coating and lid/head</u> welding
- Identification of <u>RD&D needs</u> for waste canister design, manufacturing and demonstration
- Recommendations to the IGD-TP

Waste Canister for HLW and Spent Fuel

WG 2: Introductory remarks

Common disposal concepts

- Deep geological repositories will be sited, designed, constructed, operated and closed to isolate RW from the accessible biosphere;
- Surface operations are as important as activities in the underground (UG); infrastructure like shafts and/or ramps that connects the UG with the surface;

- Deep geological repositories may remain operational for long period (up to 100 yrs), may be expanded if needed;
- ALARA and the defence-in-depth
 strategy along with engineered
 barriers are often applied to
 minimize exposure risks.

Repository Design: Drift Disposal Concept in Rock Salt

(after: preliminary safety assessment for the Gorleben site,VSG)

Repository design: Borehole Disposal Concept

Vitrified Waste and Spent Fuel Canister

Emplacement tests

Repository design: Disposal in Clay

Repository design: Disposal in Crystalline rock

Cask for Drift Disposal Concept

e. g. 65 t POLLUX cask for max. 10 PWR spent fuel elements

(Source: GNS)

Container Type for Borehole Disposal Concept

New design (2013) of a single container for HLW canister and SF

Canister concepts for disposal in Clay

Canister concepts for disposal in Crystalline rock

Main Transport and Emplacement Systems

Drift emplacement

in a Disposal Drift

Demonstration of Transport- and Emplacement Techniques

Shaft Transport system for Payloads up to 85 t

In situ-Heating Test (10 years) to Proof POLLUX-Cask Emplacement Concept

Emplacement Technique for POLLUX-Casks

Demonstration Tests with Neutron Sources on Surface and Underground

Repository operations:

- **Underground :** typical processes include:
 - Ready packages are transferred in shielded (transfer) cask;
 - Placement of disposal canisters in boreholes or cells;

e.g.: shaft transport and emplacement of POLLUX casks (German concept)

Exposure to workers and the public during the operational phase is likely similar low as in other nuclear facilities.

Proof of Repository Design (Drift Disposal Concept)

... by means of demonstration tests

in-situ test field in the Asse mine with electrically heated casks (POLLUX-cask emplacement concept)

Installation of test casks and monitoring system (left) 1990

Dismantling and cask removal 10 years later (right)

Borehole Emplacement Technique

photo of the manufactured transfer cask (designed for safely shielding the spent fuel canister (BSK 3) during transport to underground and during emplacement process)

Borehole Emplacement Technique

photo of the manufactured transport cart (designed for the transport of the transfer cask from surface through the shaft to the underground)

WG2: Main subjects

Requirements & options (materials, design,...)

Technical Requirements for High Level Waste Disposal Containers with regard to their Retrievability during Operation and Recovery after Repository Closure **T. Orellana Perez - BAM**

Candidate Material Solutions for the Design of Nuclear Waste Storage Canisters S. Holdsworth - EMPA

Czech Disposal Canister Programme

I. Pospiskova - SURAO

WG2: Main subjects

Canister manufacturing and sealing/welding

Experience in manufacturing of nuclear storage containers via casting, forging and machining techniques

M. Blackmore - SFIL

Implications of canister design and materials on closure welding for deep geological disposal canisters for high level nuclear waste and spent fuel

C. Punshon - TWI

WG2: Main subjects

Copper coatings

Developments of the Canadian Copper Coated Used Fuel Container P. Keech - NWMO

Electroplated copper and alternative design possibilities

A. McClusky - BEP

Overview of Cold Spray Coating Technology

H. Lovelock – TWI

Mechanical-Corrosion Effects on the Durability of High Level Waste and Spent Fuel Disposal Containers

C. Padovani - RWM

WG2: Special Feature

Corrosion

Sharing information on container materials for High Level Waste and Spent Nuclear Fuel (IGD-TP activity JA11a)

C. Padovani - RWM