Implementing Geological Disposal of Radioactive Waste Technology Platform 7th Exchange Forum Hotel Córdoba Centre, Córdoba, Spain, October 25-26th, 2016

R&D Activities in Ukraine towards Geological Disposal of Radioactive Waste

Presented by - I.Shybetskyi

Radioenvironmetal Centre of National Academy of Sciences of Ukraine

55b, Gonchara str., Kiev, 01054, Ukraine Phone/fax:+38-044-486-35-98 e-mails: <u>shybetsky@hydrosafe.kiev.ua</u> <u>iurii.shybetskyi@gmail.com</u>

Content

- 1. Background
 - > Ukrainian Nuclear Program and Waste Inventory
- 2. General Characteristics of R&D
 - > Main projects & actors
- 3. Status of R&D Activities
 - > Site Selection
 - > Repository Concepts Development
 - > EBS and Natural Barriers Studying
 - Safety Case Development
 - > Natural Analogs
- 4. Conclusions

Contributors

Avila, Rodolfo	Facilia, Sweden
Bugai, Dmitrii	Institute of Geology, NASU, Ukraine
Felix, Bernard	ANDRA, France
Forsström, Hans	SKB, Sweden
Kireev, Sergiy	State Specialized Company "Ecocentre", Ukraine
Koliabina, Iryna	Institute of Environmental Geochemistry, NASU, Ukraine
Krone, Jürgen	DBE Technology, Germany
Sayenko, Sergiy	National Science Centre "Kharkov Institute of Physics and Technology", NASU, Ukraine
Shabalin, Borys	Institute of Environmental Geochemistry, NASU, Ukraine
Shestopalov, Vyacheslav	Radioenvironmental Centre, NASU, Ukraine
Shybetskyi, Iurii	Radioenvironmental Centre, NASU, Ukraine
Solente, Nicolas	ANDRA, France

Background (1): Nuclear Energy in Ukraine

4 NPPs and 15 operating reactors (2 WWER-440 + 13 WWER-1000), 3 decommissioned reactors (RBMK-1000). Total capacity is 13,8 GW. NPPs produce 50% of electricity. An intention to build additional reactors.

Background (2): Waste Inventory

Waste considered for geological disposal (thousand m³) Total amount of waste - app.60 thousand m³

- A total volume of radioactive waste in Ukraine is over 3.45 Million m³
- App. 3.3 Million m³ (96%) of waste have the accidental origin
- 97 98 % of waste is short lived and can be disposed in the near surface repositories
- App. 59 000 m³ of long-lived waste must be disposed in the geological repository
 - 95 % of total volume of long lived waste are localized in Chernobyl Exclusion Zone (CEZ)

Background (3): National Strategy and State Program

According to **Strategy**, DGR in Ukraine should be created by 2048.

The **Program** details the activities for 2008-2017.

Key tasks of the **Program** in the field of DGR development are:

- R&D program
- site investigations
- DGR concepts
- > preliminary safety assessments
- > development of decision about site selection

General Characteristics of R&D activities (1)

R&D activities started since 1993

Participants: Institutes of the NASU, Universities, State Specialized Enterprises of SAMEZ, the enterprises of the State Geological Survey, and International organizations and Consortia.

Funding: the European Commission and IAEA technical assistance, as well as international organizations grants (first of all, by Scientific and Technological Centre of Ukraine or STCU) and – state budget of Ukraine.

Areas:

- > Siting
- > Disposal concepts
- EBS and Natural barriers study
- > Safety assessments
- > Analogs

General Characteristics of R&D Activities (2): Main Actors

General Characteristics of R&D Activities (3): Examples of Performed Projects

R&D Projects	Туре	Who
EC (2013): U.04.01/08-C 'Improvement of new radwaste classification'	Concepts	ICD
EC (2013-now): U.04.01/09-B 'Disposal concepts for Radwaste in Ukraine'	Concepts, EBS, SA	ICD
IAEA (2010): CRP T21024 'The use of numerical models in support of DGR'	SA	REC
IAEA (2012-now): CRP T21027 'Processing Technologies for HLW and Characterization of Waste Forms'	EBS	IEG
STCU (2003): # 1580 'RBMK reactor spent fuel encapsulation technology'	EBS	NSC KIPT
STCU (2006): # 3187 'Grounds for Radwaste Disposal in Korosten Pluton'	Siting, SA	REC, SGS
STCU (2010): # 4568 'Investigation of protective layer of repositories'	EBS, SA	IEG
IRSN (2011): Project EPIC 'Experimental Platform in Chernobyl'	Migration	IGS
SAMEZ (2008): # 34/1k-08 'The program for DGR siting'	Siting	REC
ENERGOATOM (2010): # SOU-N-YaEK 1.027.2010 'Calculation of activity of HLW from reprocessing of SF of WWER-440 reactors'	EBS, SA	AESKAR
NASU (2011): 'Investigation of Korosten Plutone and its Prospects for Geological Disposal of Radwaste'	Siting, SA	REC, SGS
NASU (2003): 'Possibility for radwaste disposal in the mines of Ukraine'	Siting	IEG
NASU (2015): 'RN geochemistry in natural and technogenic systems'	EBS, SA	IEG

Siting (1): Considered options (1993-2000)

- **1** Korosten Pluton (Proterozoic granitoids)
- 2 CEZ areas within Korosten pluton (Proterozoic granitoids and Archaean gneisses)
- 3 Iron ore mine Saksagan (Archaean granitoids)
- 4 Uranium mines (Proterozoic crystalline formations)
- **5** Salt-dome structures of the Dnieper-Donets depression
- 6 Permian bedded salts of folded structure
- 7 Black Sea depression (Paleogene and Neogene clays)
- 8 Forcarpathian depression (potash salts and Neogene clays)

IGD-TP EF7, Spain, Cordoba, 25-26 October, 2016

Contact: I.Shybetskyi (shybetsky@hydrosafe.kiev.ua)

Siting (2): Results of 2000-2015

The regional geological scheme of the CEZ and adjacent territories and location of prospective areas

CRYSTALLINE BASEMENT Rocks: rapakivi-like granites, gneisses	SEDIMENTS Thickness: Age: Lithology:	50 to 500 m J, K, P, N, Q sandstone , aleurites,
Rocks: rapakivi-like granites, gneisses	CRYSTALLINE E	BASEMENT
gneisses	Rocks:	rapakivi-like granites,
Age: from 1640 to 2050	Age:	from 1640 to 2050

PROMISING AREAS

	Name	Area, km ²	Sediments, m
1	Novosilky	130	350-500
2	Veresnia	210	160-200
3	Zhovtneva	80	50-100

Contact: I.Shybetskyi (shybetsky@hydrosafe.kiev.ua)

Concepts (1): Comparison of mined and borehole concepts

Mined repository (KBS-3V) → Depth 500-1000 m → For all types of waste

Very deep borehole (VDH) → Depth 2000-4000 m → Only for SF&HLW

Contact: I.Shybetskyi (shybetsky@hydrosafe.kiev.ua)

Concepts (2): New Waste Classification

Current Classification

New Classification First type: landfill repository for VLLW, Sweden (In Ukraine Buriakovka) Disposal Disposal Category Description Description Class option option Surface not determined **Clearance after** (near-surface) Very Low in Ukraine - large Landfill Short-lived 300 years of repositories Level Waste volumes of waste repositories regulatory waste (first type) in Ukraine can be (VLLW) (first type) control classified as VLLW Deep Surface geological Second type: surface repository for LLW, France (in Ukraine – Vector) **Clearance is** corresponds to (near-surface) Long-lived Low Level repository existing shortrepositories impossible waste Waste (LLW) (second type) lived waste (second type) **Repository** at Intermed. corresponds to interm. depth Level Waste existing long-(third type) (ILW) lived waste Deep Third type: GR at intermediate depth corresponds to geological High Level existing heatrepository for disposal of ILW (SFR, Sweden) Waste (HLW) generating HLW (fourth type) ANDRA DBETEC (enresa Fourth type: DGR (KBS-3V, Sweden) SKB Fourth type: DGR (VDH, Sweden) for disposal of HLW for co-disposal [Project U4.01/08-C, 2012] of ILW and HLW **Contact:** J.Krone **IGD-TP EF7**, Krone@dbe.de 13 Spain, Cordoba, 25-26 October, 2016

Concepts (3): Recent recommendations for Ukraine

ILW disposal concept

The SKB concept 2BMA developed for the extension of the SFR facility in Forsmark

HLW disposal concept

The KBS-3V reference concept for spent fuel and vitrified HLW and KBS-3H as an alternative presently studied by SKB (Sweden) and Posiva-Oy (Finland)

Concepts (4): Action plan – main milestones

	Geological Repository for ILW	Deep Geological Repository SNF/HLW
2016 – 2025	Characterize the ILW. Develop disposal concept and WAC. Start conditioning and storage. Geological investigations.	Define preferred disposal concept. Preliminary siting activities. Safety assessment and R&D programme. Long-term safety of storage.
2026 – 2035	Detailed site investigations and choice of site. Licensing, construction and start of operation of disposal facility	Study alternative concepts. Investigate co-location with ILW. Further geological screening. Decide on concept and geological area.
2036 – 2045	Continued operation. Continue supporting R&D programme.	Choose area and concept for disposal. Detailed site investigations and decide on site. Design, license, and start construction of disposal facility and encapsulation plant.
2046 – 2055	Continued operation.	Start operation. Continue supporting R&D programme.
	IN UNIT	

[Project U4.01/09-B, 2016] Contact: H.Forsstrom hans.forsstrom@skb.se

EBS (1): Radionuclide composition of HLW

EBS (2): Synthesis of Ceramic Matrix

EBS (3): Leaching of Cs from Ceramic Matrix

Task: Studying of Cs leaching from ceramics matrices for immobilization of HLW

Materials: crystalline ceramics on the base of ZrO₂, Al₂O₃... (Zirconolite, Perovskite, Garnet And Hollandite)

The SEM images of pyrochlore based ceramics (sample III-P-GdCe₄ and EDS spectra of pyrochlore phase (b) and TiO₂-based phase (c)

Cs leaching rate in deionized water at 150° C from ceramics of $Ba_{0.9}Cs_{0.2}Fe_{2.0}Ti_{6.0}O_{16}$ composition

Contact: B.Shabalin b_shabalin@ukr.net

EBS (4): Containers

Design: Concept based on KBS-3, adapted to Ukrainian SNF dimensions and geometries. Common Cu shell, specific cast iron insert

	VVER-1000	VVER-440	RBMK-1000	Vitrified HLW
Assemblies	4	10	19	1-3 canisters
U (tHM)	1,7	1,2	2,2	-
Length (m)	5,0	3,55	4,0	1,5 – 4,5

EBS (5): Sorption Properties of Buffer

Task: Modeling of U, Pu, Ra, Sr, Cs, Co distribution in clay / sand layer

Code: GEM http://gems.web.psi.ch/overview.html

System: U, Pu, Ra, Sr, Cs, Co + concrete pore water + clays + sand

Result: pH changed from 13,44 to 9,1; all radionuclides are almost completely uptaken by polimineral clay-sand mixture (up to 99,98 %) by different mechanisms.

[Project STCU # 4568] Contact: I.Koliabina kolira_igns@i.ua

Natural Barriers (1): Nuclides Migration in Irradiated Granites

Task: Study of the tracer elements penetration (as volatile and actinide simulators) in depth of rocks (in pristine and irradiated state)

Analytical methods: ceramography, XRD, TG-DTA and SEM.

Result: Penetration profile of the ¹⁶⁹Yb in granites (as tracer simulating the actinides)

Spain, Cordoba, 25-26 October, 2016

Natural Barriers (2): Kinetics of ¹³⁷Cs Absorption in Granites

Semiempirical model

37%

28%

$$C_{sorb} = \sum_{i} a_{i} \cdot e^{-k_{sorb}^{i} \cdot t} - \sum_{i} a_{i} \cdot e^{-k_{des}^{i} \cdot t}$$

 C_{sorb} – Cs sorbed at time t; a_i – factor corresponds to the highest possible cesium absorption on the i-th type of reaction centers;

kinetic sorption/desorption parameters for i-th type of reaction centers

Experimental conditions:

Plagiogranite of Korosten pluton

Tasks: Theoretical and experimental

granitic rocks of Ukrainian Shield

study of cesium absorption kinetics in

model chemical composition of fractured water

Sericite

Quartz

Main cations in model water (MW 1)

рН	7,3
Ca ²⁺ , mg/l	49,7
Na⁺, mg/l	15,43

Spain, Cordoba, 25-26 October, 2016

Safety Case Development (1): Methodology of Safety Calculation

Tasks: To develop the methodology of absorbed dose calculation for geological disposal of HLW

Initial suggestions:

- the depth of repository: 300 m
- the length of repository: 1350 m
- flux is shown per one container of vitrified waste with volume of 200 l
- a steel wall has through-the-thickness cracks

Safety Case Development (2): Initial RN transport modeling

Tasks: groundwater flow and radionuclide transport modelling to characterize the influence of hydrogeological conditions of Ukrainian sites

Tool: PMWin Groundwater modelling system (<u>http://www.pmwin.net/pmwin5.htm</u>)

Influence of sorption on the contamination plume spreading

Influence of the fracture on the contamination plume spreading

Safety Case Development (3): **Deep Geological Repository for HLW**

 \triangleright

 \triangleright

1,0E+04

1.0E+03

1.0E+02

1.0E+01 1.0E+00

1.0E-01

1,0E-02

1.0E-03

1,0E-06

1.0E-07 1.0E-08

1.0E-09

1.0E-10 2 0E+03

20E+04

-Fract. Rock 1 -Fracy. Rock 2 -Sed. Dep 1

20E+05

Time after closure, years

2 0E+06

-Sed. Dep 2 ---- Near field

Nuclide flux

1.0E-04 1,0E-05

DGR Concept

Doses for different GW fluxes

ANDRA DBETEC (enresa SKB [Project U4.01/09-B, 2016] **Contact:** R.Avila rodolfo@facilia.se

- the doses are below the dose constraint in Ukraine (10 µSv/year)
- DGR has to be placed at the depth where the groundwater fluxes are sufficiently low
- sedimentary deposits have a significant effect on retardation of radionuclides
- more realistic assumptions (e.g. concerning K_d) would lead to much lower doses
- few radionuclides I-129, Cl-36, C-14, Ni-59 and Se-79 have a potential significant to the doses

IGD-TP EF7, Spain, Cordoba, 25-26 October, 2016

Natural Analogues (1): Chernobyl Exclusion Zone

¹³⁷Cs contamination

Main characteristics:

- > Area 2 600 km², contaminated after accident
- No population
- Dangerous object Shelter, ChNPP, RWDS, RWTSS, **RAW management facilities**
- Personnel 6 000 persons (Chernobyl town, ChNPP)

Basic activities:

- ChNPP decommissioning
- RAW management
 - Conditioning
 - Storage
 - Disposal
- Water protection measures
- > Fire safety implementation
- Forestry measures

Key attribute: CEZ is a unique natural analogue, which allows to study radionuclide migration in natural conditions And to validate the biosphere models

Contact: S.Kireev s.kireev@ukr.net

IGD-TP EF7, Spain, Cordoba, 25-26 October, 2016 200

100

Natural Analogues (2): ⁹⁰Sr Transport in Chernobyl Landscapes

Numerical schematization

Task: Groundwater transport modeling for ⁹⁰Sr from the waste trench in the "Red Forest" site in Chernobyl zone

Tool: Modflow – MT3D (http://www.pmwin.net/pmwin5.htm)

Result: Predicted long-term ⁹⁰Sr transport in the aquifer (steady-state conditions)

Radionuclide transport modeling results

Natural Analogues (3): Opportunities – Central Analytical Lab

The Central Analytical Laboratory (CAL) was commissioned as a part of the EC project "Improvement of the Infrastructure for the Radioactive Waste Management in the Chernobyl Exclusion Zone. Phase II".

s.kireev@ukr.net

The CAL is included to the structure of the State Specialised Company "Ecocentre" and placed in Chernobyl town. "Ecocentre" is responsible for radioenvironmental monitoring within CEZ

CAL capabilities:

- full-scale characterization of RAW samples from CEZ according to WAC of disposal facilities (physical, chemical and radiological criteria)
- development of necessary analytical methods and methodologies

"Ecocentre" capabilities (per year):

- > 350 000 measurements of exposure rate
- 4 000 5 000 samples of aerosols, surface and ground water, soils and biological objects
- 8 000 12 000 measurements of nuclide activity in collected samples

Conclusions (1)

- Ukraine has a national program of deep geological repository development (including the R&D program)
- The main funding source international technical assistance. It is necessary to provide adequate funding at the national level
- Many research institutions are involved in R & D activities. Their actions are often not coordinated. It is necessary to have a single coordination centre.
- Current R&D activities in Ukraine belong to the generic phase of DGR development:
 - early stages of site selection
 - conceptual studying of the disposal system
 - generic safety assessments

Conclusions (2)

- Three promising areas for DGR were determined within Chernobyl Exclusion Zone and in adjacent territories: Zhovtneva, Veresnia and Novosilky areas
- The concepts of ILW and HLW repositories were proposed for conditions of the Chernobyl Exclusion Zone
- Results of generic safety assessments for proposed concepts demonstrate the suitability of crystalline rocks within the Chernobyl Exclusion Zone
- There is urgent necessity of detail field investigations (including drilling) within the promising areas
- In Ukraine there is a unique opportunity for experimental study of radionuclide migration in natural conditions. The laboratory infrastructure has been created

Ukraine is interested in learning the international best practices and in broad collaboration!

Thank you for attention!