

CarboSOLUTIONS

Implementing Irradiated-Graphite Waste Management

Werner von Lensa, C. Rizzato, L. Kuhne Forschungszentrum Juelich GmbH, Germany

<u>Co-authors</u>:

G. Laurent, EDF; J. Goodwin, Bradtec Decon Technologies; J.L. Leganés Nieto, ENRESA; J. Fachinger, FNAG; D. Diaconu, INR; P. Poskas, LEI; A.W. Banford, NNL; H. Eccles, Uclan; A.N. Jones, UoM et. al.

- Innovative waste management SOLUTIONS on
 - Irradiated-graphite (i-graphite) &
 - > other carbonaceous waste (e.g. backed carbon, pyrocarbon)
- Multi-scale investigations on i-graphite characteristics
 - Systematic correlation of influencing parameters (Temp., Atm. etc)
 - Predictive models for radionuclide releases
- Demonstration of 'Best Practices' in
 - Retrieval of i-graphite from reactor core,
 - Treatment / purification options (towards Pilot Scale),
 - Storage, Conditioning and Disposal,
 - Recycling of i-graphite for future V/HTR, MSR & Fusionreactors
- Synergies across near & medium-term decommissioning projects

CarboSOLUTIONS Partners

CarboSOLUTIONS partnership will represent main actors and projects on i-graphite management & research in the EU & neighbour countries

Build upon CARBOWASTE Partnership*:

- nuclear industries (AMEC NNC, AREVA NP, Doosan Babcock, PBMR)
- waste management companies (Bradtec, Studsvik, Hyder, FNAG)
- utilities (EDF, Sogin, (EPRI))
- graphite manufacturers (GrafTech, SGL-Carbon)
- waste management authorities (ANDRA, NDA, ENRESA)
- research (CEA, CIEMAT, ENEA, FI, FZJ, INR, JRC, LEI, UK NNL, NRG, SCK•CEN, NECSA)
- universities (EMN, CNRS-ENS, IPNL, The University of Manchester)
- Additional partners (from ,CARBOWASTE countries' plus Ukraine, Russia etc.)
- * Request for Expression-of-Interest in preparation

- About 250 000 tons already accumulated, worldwide
- Origin from different reactor types
 - > MAGNOX (27), UNGG (7), AGR (14), HTR (3)
 - > RBMK (2), Pu-Production Reactors & numerous MTR
- Various graphite grades and impurities
- Individual operational ,histories'
- Varying content of long/short-lived radioisitopes
 ¹⁴C plus ³H, ³⁶Cl, ⁶⁰Co, ⁷⁹Se, ⁹⁹Tc, ¹²⁹I, ¹³⁵Cs, ^{152/154}Eu etc.
- Diverging national classifications (ILW, LLW, LL-LLW)
- Different i-graphite management strategies
- Closed ,i-graphite cycle' essential for V/HTR & MSR (Gen IV)

- FR (Decommissioning of UNGG (e.g. Bugey, Sleeves) & G1 / G2)
- UK (BEPO, DRAGON, Windscale Piles, Hunterston, AGR Sleeves etc.)
- ES (Vandellos, UNGG Sleeves)
- IT (Latina)
- DE (AVR, THTR, MTRs, HTR-Fuel)
- ROM (MTRs)
- LT (Ignalina 1 & 2, Sleeves)
- UKR (Tscherobyl, Sleeves)
- RUS (RBMKs, Sleeves & early production reactors)

Synergies: common reactor types, graphite grades, disposal routes etc.

National programmes underway or scheduled, structural funds (e.g. Ignalina)

Fulfills , Programme Related Logics' for FP8

First nuclear chain reaction 2nd of December,1942

Painting by Gary Sheahan

Graphite in gas-cooled reactors

8

Retrieval of i-graphite mostly not considered in the design phase !

Challenging Retrieval

Demonstration of principal options (e.g. wet or dry retrieval) necessary !

- Significant amounts of ¹⁴C (5730 y half-life)
 - > From ¹⁴N (1,81 barn), nitrides and absorbed N_2
 - ➢ From ¹³C (1,1%; 0,0009 barn) and ¹⁷O (0,037%, 0,235 barn)
- Significant amounts of ³⁶CI (300 000 y half-life)
 - From ³⁵Cl left behind on purification from neutron poisons
- Wigner energy (Stored Energy)
 - Function of neutron flux, temperature and irradiation history
 - Potentially releasable, acceleration of corrosion ?
- Various other contaminants and
- Mix of different materials & dimensions

Nuclear graphite is a porous *polycristalline material with well graphitized and amorphous zones*

Systematic approach needed to establish predictive models on radionuclide speciation, location & releases

 \Rightarrow Correlation with operational conditions necessary !

Deposits & Bioavailability of RN ?

Carbonaceous deposit found on UK Magnox i-graphite

simulated on virgin Magnox graphite by depositing C-13 from a C-13 precursor onto a graphite surface bears a strong resemblance to i-graphite deposit (see SEMs below).

Virgin Magnox Graphite

Magnox Graphite (C-13 Deposit)

Irradiated Magnox (Carbonaceous Deposit)

Microorganisms found on cement control samples

Diffusivity rates with the presence of microorganisms at least five times greater !

Not addressed in detail, yet

By couttesy of UCLAN

Release of C- 14	Relative Fractional release [%]	Time [y]	
Air	0,0018	1.56	
Moist Air	0,07629	1.56	
Packed in PE	0,00730	0.94	

What is the best conditioning for i-graphite ?

Radionuclides of Interest

Mobile/volatile species

Tritium

- Generally high activity (≥ A_{C-14})
- Relatively short T_{1/2} (12,32 y)
- Safe enclosure?

Radiocarbon

- Generally high activity (1-1000 kBq/g)
- Long T_{1/2} (5730 y)
- Identical chemical behaviour of C-12
- Biocompatibility
- > Chlorine-36
- Generally low to very low activity (10-100 Bq/g for UNGG)
- Long T_{1/2} (301000 y)
- High mobility

- Origin (¹⁴N(n,p)¹⁴C, ¹³C(n, γ)¹⁴C, ¹⁷O(n, α)¹⁴C)
- Chemical Form(s)
 - Mainly elemental, covalently bonded
 - Multitude of organic compounds
 - Coexistance with functional groups on the crystalline surfaces
- Two ,Macro' Locations identified
 - Homogeneous within the crystallites via ¹³C activation (more stable)
 - Heterogeneous in hot spots or enriched on surfaces (releasable)
- ¹⁴C Removal
 - Up to 80% total radiocarbon removal at ~10% mass loss
 - Removable fraction depends on i-graphite ,history' (pre-corrosion)
 - New treatment processes under development (-> lower mass loss) 17

Origin

- Impurities in the raw materials
- Cl added during ,purification'
- Air pollution (e.g. near-sea sites)
- Chemical Form
 - Organic (C-Cl) \rightarrow Less mobile
 - Inorganic
 - Oxychlorine compounds (stable)
 - Hydrogen Chloride (Thermal treatment effective)

© EDF

Ħ

H

- Location (SIMS)
 - Hot Spots
 - Huge Variability
- Cl releases already during operation

Open Issues: Impact of operational conditions Purification methods for ³⁶CI

Reaction	σ(E _{th}) [b]		
³⁵ Cl(n,γ)	44		
³⁴ S(n,γ) ³⁵ S→ ³⁵ Cl(n,γ)	0,34		
³⁹ Κ(n,α)	0,004		

SIMS 3D Image of ³⁵CI irradiated graphite SLA2-53 (CEA)

18

©EDF

Other Radionuclides

19

- Activation Products, Uranium and Transuranics
 - Efficient and selective removal through chemical treatment(s) !

New Option: Use of Intercalation Process

Treatment Options

ARBO SOLUTIONS

Disposal issues

- <u>Three disposal options</u>
 - Surface / Near surface
 - Shallow disposal (< 200 m)</p>
 - Deep geological disposal
- i-Graphite is a chemically inert & stable matrix
- Release kinetics of LLRN (¹⁴C, ³⁶Cl etc)
- Inorganic & organic ¹⁴C and ³⁶Cl releases
- Development of specific Waste Containers
- Geochemical Modelling of RN transport
- Repository Performance Assessment
- International Waste Acceptance Criteria

- Kinetics of water penetration for irradiated graphite
- > Water impregnation is fast (<100 days) and does not limit RN release
 - > Water occupies between 50% to 80% of the total porosity
 - Dependent on graphite grades

Leaching of ¹⁴C and ³⁶Cl

Releases in 2 stages

- 1. Very rapid release kinetics (labile fraction)
- 2. Slow release kinetics (non-labile fraction)

<u>R&D Challenge</u>:

- Determination of chemical speciation in gases and liquids
- Removal of labile fractions by i-graphite treatment
- Predictive analytical model for release mechanisms

Surface Disposal Facilities

Case of El Cabril (ENRESA)

lsotope	Radiological Inventory of El Cabril	Disposed Activity at El Cabril (14/10/2011)	Disposed vs. Radiological Inventory	Graphite Activity ^{Per} UNGG	Graphite vs. Inventory percentage	
	(MBq)	(MBq)	(%)	(MBq)	(%)	
H-3	2,0E+08	3,14E+06	1,57	4,22E+08	211	¢
C-14	2,0E+07	2,84E+06	14,2	1,65E+08	825	
Co-60	2,0E+10	2,64e+08	1,32	1,57E+07	0,08	
Ni-63	2,0E+09	9,13E+07	4,57	5,41E+07	2,7	

- i-graphite from 1 UNGG exceeds Waste Acceptance Criteria!
- Removal of tritium / reduction of ¹⁴C by thermal treatment
- Volume reduction beneficial
- Grinding/mixing with concrete
- Inclusion into pore-free matrix (e.g. IGM)

Demonstration with i-graphite !

- Analyses not bonded to specific disposal concept, geospheres & depth
- Calculations made for UK inventory (~95,000 tonnes, ~ 6000 TBq ¹⁴C, ~26 TBq ³⁶CI)
- <u>Regulatory guidelines satisfied even with conservative assumptions</u> for vaults containing only packages of i-graphite wastes & backfill
 - Predictable behaviour of i-graphite in isolation
 - Improved performance (transport in gas not likely)
 - Simplified safety arguments & safety case
- Difficult to generically assess <u>co-disposal with other ILW</u>
 - Bulk gas generation (i.e. metals, organics, strongly irradiating wastes)
 - Incorporation of ¹⁴C in methane gas (e.g. by autrophic bacteria)
 - Container integrity relevant
- Human intrusion relevant, but less significant than for other ILW (strong γ & α)
- Unlikely large scale disruption could lead to significant doses (14C in food chain)

A wider range of disposal systems might be suitable if the residual uncertainties were further reduced ! 25

Challenging R&D Programme

