Immobilisation of Radionuclides by a Cementitious Backfill

IGD-TP Prague

October 2013

David Read

Loughborough University

Summary

- → Prominent role of cement in UK programme
- → Retention of radionuclides by cement
- → Solubility of selected radionuclides in NRVB
 - → Key uncertainties
 - → Effect of organics (legacy reagents, CDP, SP)
- → Diffusion experiments
- → Advection tests
- → Field tests & natural analogues
- → On-going, related & potential future work

Cement and its Role in Geological Disposal

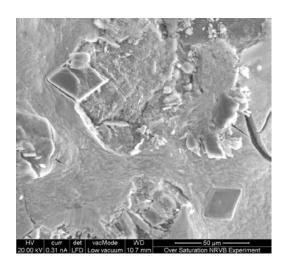
- → Potential uses grout, containers, backfill, structures
- → Readily available, low cost, ease of handling
- → Versatile design for specific functions (e.g. high density, SRC)
- → Non-hazardous & wealth of experience in construction sector

However:

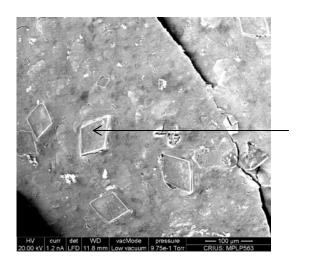
- → Cementitious barriers are important in UK concept
- → Some countries adopting avoidance/minimisation strategies
- → Backfill requirements (NRVB) are unconventional (high porosity, low strength)
- → Effect of additives (e.g. SP) difficult to predict

Demonstrating Chemical Containment

- → Promotes highly alkaline & in some cases reducing matrix
- → Precipitated as discrete phase (oxide, hydroxide etc.)
- → (Co)-ppt or adsorbed on surface of cement minerals
- → Incorporated into hydrated minerals as they (re)crystallise


Last will depend on porosity, maturity & degree of carbonation of backfill

Solubility – Multi-element


		Cs	1	Se	Ni	Eu	Th	U
Oversaturation	NaOH	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	Ca(OH) ₂	✓ Steady state		✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	NRVB	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP + Na ₂ S ₂ O ₄	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP + Fe	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
Undersaturation	NaOH	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	Ca(OH) ₂	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	NRVB	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP	✓ Steady state	· •	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP + Na ₂ S ₂ O ₄	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state
	CDP + Fe	✓ Steady state	✓ Steady state	✓ Steady state	✓ Steady state	X Not steady	X Not steady	✓ Steady state

Retention by Precipitation

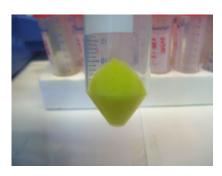
- → Insoluble hydroxides (Co, Ni, Cd)
- → LDH, hydrotalcite-like (Co, Ni + anions)
- → Insoluble Ca metallates (e.g. CaUO₄); however most are rel. soluble

Oversat./NRVB/Year 1

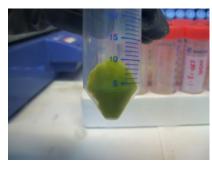

CaSeO₃

Oversat./Ca(OH)₂/Year 2

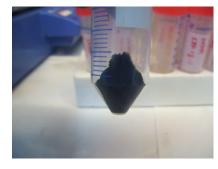
Incorporation in Aft & Afm Phases


- → Both cations & anions incorporated
- → Trivalent cations form ettringite-type phases Ca₆[M(III)(OH)₆.12H₂O](SO₄)₃.2H₂O
- → Tetravalent cations form thaumasite-type phases Ca₆[M(IV)2(OH)_{6.}12H₂O](SO₄)₂(CO₃)₂

- Solids formed in Ca(OH)₂ and NRVB show very similar spectra
- Solids formed in CDP show distinctive FTIR pattern

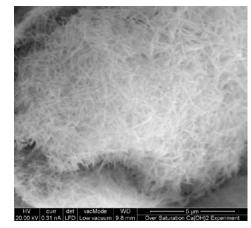


Solid Phase Characterisation


Sampling of solids Year 1 & 2

Precipitate in NaOH

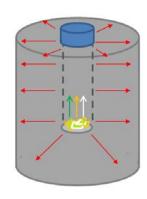
Precipitate in CDP


Precipitate in CDP + $Na_2S_2O_4$

XRD	SEM-	TEM		
✓ Completed	✓ Com	In progress		
FTIR	Raman	Synchrotron	TRLFS	
In progress	In progress	S Application	Planned	

Most solids show poor crystallinity in all media

Solubility Results: Status


- → Monitoring of aqueous solubility:
 - Cs, I, Se, Ni and U reach steady state (1-2y)
 - Over- & under-saturation data converge
 - Significant increase of solubility (2-3 orders of magnitude) of U and Ni in the presence of CDP

- → Characterization of solids
 - XRD shows poor crystallinity with negligible changes between solids from year 1 & 2
 - SEM imaging shows most phases colloidal
 - Se forms good crystals in the presence of Ca
 - Fe surfaces in some experiments help nucleation

Diffusion Experiments

	Multi-elemental		Single-element (active isotopes)					
	Cs+I+Ni+Eu+Th+U	Cs	I	Th	U	Ni	Eu	
NRVB	4 completed + 7 on-going	4	4	2	2	2	2	
CDP	4 completed + 7 on-going	4	4	2	2	2	2	

Through diffusion in radial configuration

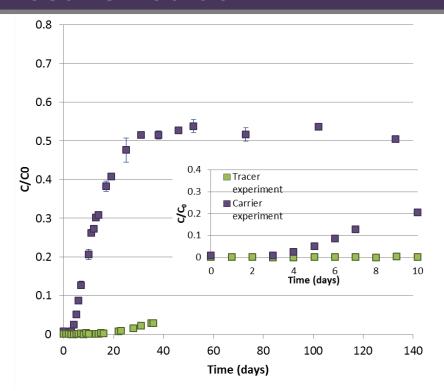
Two aqueous phases:

- NRVB-equilibrated water
- NRVB + CDP

All under N₂ atmosphere

Status of Diffusion Experiments

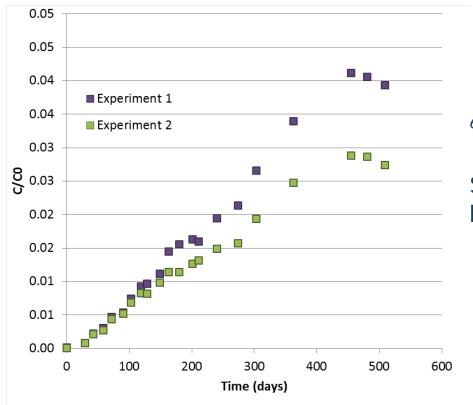
		NRVB	CDP
	Cs	✓ Breakthrough	✓ Breakthrough
lent	Ī	✓ Breakthrough	✓ Breakthrough
Multi-element	Th & On	Son going	Son going
ti-e		Son going	Son going
Mul		Son going	
_	Eu	Son going	Son going
±	Cs	✓ Breakthrough	✓ Breakthrough
ner	1	✓ Breakthrough	✓ Breakthrough
e	U	Son going	
<u>e</u>	Th	Son going	On going
Single-element	Ni	Son going	✓ Breakthrough
(V)	Eu	Son going	On going


Diffusion Results: Caesium

NRVB

- Breakthrough after 2 days
- Tracer experiments show higher % retention than the carrier tests

Diffusion Results: Iodide

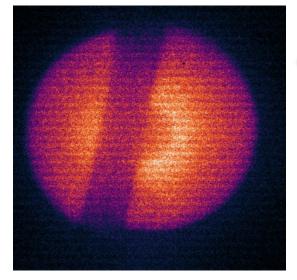


NRVB

- Experiments at tracer levels (125 only) show very little breakthrough
- Breakthrough after 4 days for the carrier experiments
- Significant retention observed,
 ≈50%, at carrier levels (125I + KI)

CDP reduce uptake of I by NRVB (30% cf. 50%)

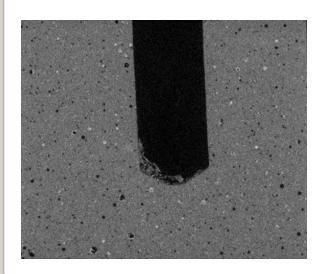
Diffusion Results: Nickel

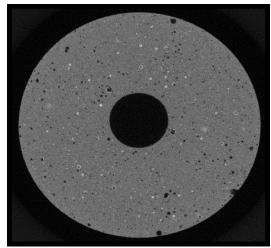


⁶³Ni + carrier

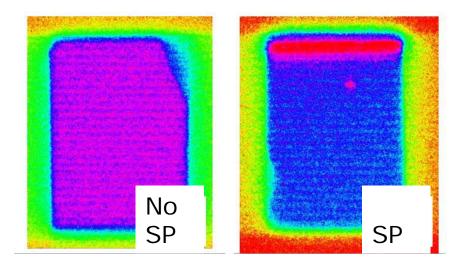
Slow but measurable breakthrough with CDP present

No signs of breakthrough in absence of CDP


Diffusion Results: Iodide (AutoRad & XRT)

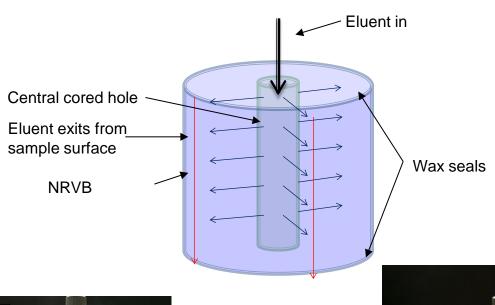


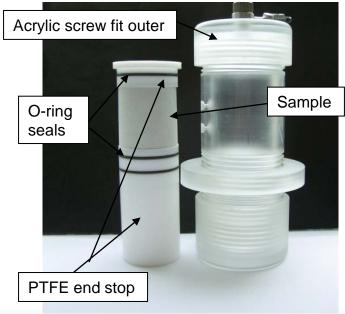
Radial distribution is homogenous

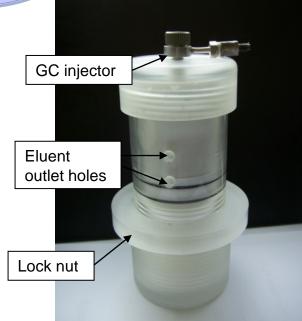

Migration through the NRVB matrix and not through micro-fissures

Superplasticisers – Polycarboxylates

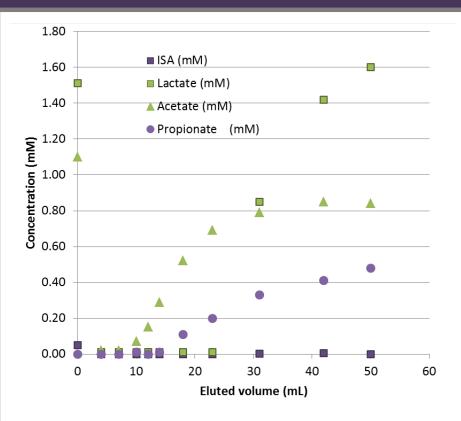
- → Increase solubility of radionuclides in solution
- → Inhibit uptake by cement
- → Lead to bleed in some blends
- → Developing bespoke SP to minimise complexation of r.n.

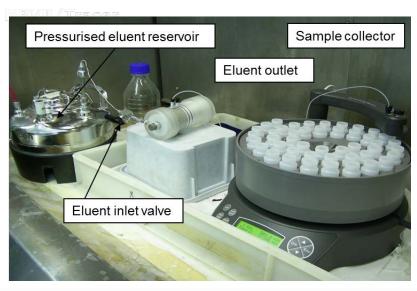

But: Grouts very different to backfill

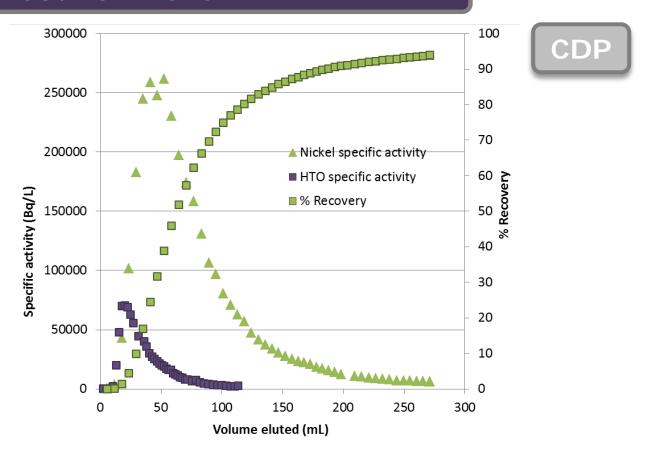

A. Young, P. Warwick, A. Milodowski and D. Read. Behaviour of radionuclides in the presence of superplasticiser." Adv. Cem. Res. **25**: 32-43 (2013).


Diffusion Results: Summary

- → Simple, robust and cost-effective methodology
- → Breakthrough of Cs and I plus Ni in the presence of CDP
- → CDP reduces the breakthrough time and retention for both cationic and anionic species
- → Diffusion experiments at tracer level showed higher retention than those in the presence of carrier
- → U, Th and Eu show no signs of breakthrough after 2 years


Advection: Experimental Setup


Advection Results

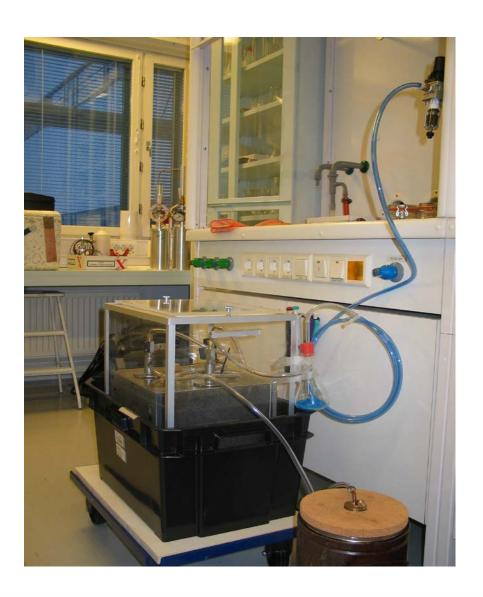

• ISA disappears from the eluate whereas concentration of propionate increases

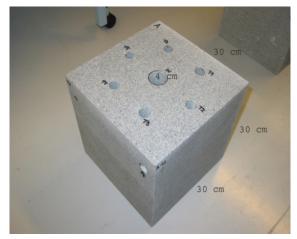
- The NRVB block was equilibrated with CDP before injection of ⁶³Ni
- Not all components of CDP behave in the same way

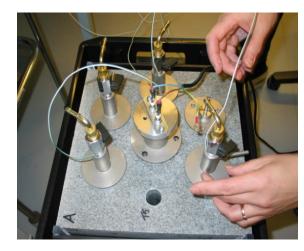
Advection Results: Nickel

- Rapid elution of ⁶³Ni, almost as fast as HTO
- 95% of the injected Ni is recovered from the block (no carrier added)

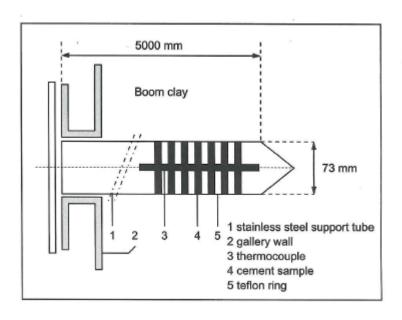
Results to Date

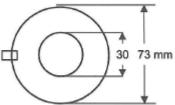

- Simple protocol allows large number of experiments & delivers reproducible data
- Empirical evidence of NRVB retention for higher valence ions
- Limited retention for monovalent cations (Cs+) & anions (I-)
- Characterisation of immobilisation phases & determination of stability essential for predictive modelling
- Greater mobility of trace radionuclides in presence of carrier
- CDP reduce uptake & shorten breakthrough times
- Methodology for deriving representative p.a. input


Future Work


- → Detailed characterisation of incipient mineral phases
- → New experiments (99Tc, 36Cl and 75Se) to help differentiate the solid phases formed in the different systems
- → Advanced spectroscopic methods to elucidate nature of local chemical environment (SSNMR, ISIS, DIAMOND).
- → Up-scaling to more representative dimensions (block, URL)
- → Effect of organics (e.g. SP) in (re-)mobilisation
- → Integrate parallel developments in cement & concrete "printing" (additive manufacturing)

Up-scaling





Up-scaling

→ In-situ experiments: HADES underground laboratory (depth 220 m, Mol, Belgium)¹

- Assessment of the effect of different cement formulations on Boom Clay
- 12-18 months
- 25° or 80°C
- Potential application of this methodology to other host rocks
- Characterisation of mineralogical changes on the cement–rock interface (dissolution/precipitation)
- Diffusive behaviour of key radionuclides through interface
- Effect of cement additives (e.g. superplasticisers)

1.- D. Read et al. Mineralogical and microstructural changes accompanying the interaction of Boom Clay with ordinary Portland cement. Advances in Cement Research, **13**, 175-183 (2001)

Supporting Evidence for Chemical Containment

- → Natural Analogues
 - → Maqarin, Oman, Cyprus
 - → Harpur Hill
- → Industrial Analogues
 - → Ancient structures (e.g. Hadrian's Wall)
 - → Encapsulation of radioactive industrial (NORM) waste
- → Underground laboratory tests (Mol, Åspö), Related research (e.g. SKIN)

Key Uncertainties

- → Nature of solubility limiting phases
- → Effect of CDP, SP & other additives
- → Porosity-permeability (cracking modes, carbonation etc.) + coupled chemical transport, mineralisation & phase evolution

Acknowledgements

Steve Williams, Rebecca Beard, Amy Young (NDA)

Tara Beattie (MCM International)

Monica Felipe-Sotelo, John Hinchliff, Matt Isaacs (LU)

Fred Glasser (University of Aberdeen)

Tony Milodowski (BGS)