

0

Microbiological studies

WG-5 description

- >27 participants from research and performance assessment – an interdisciplinary group
 - Waste management organisations
 - Technical support organisations
 - Universities
 - Consulting companies
 - National research centers/institutes
- Gender perspective: 50/50
- 9 countries represented
- 9 presentations from 6 countries

Presence of microorganisms

- Microbes are everywhere including the underground – the deep biosphere
- Microbial life change chemical equilibria.
- Microorganisms influence and change the geochemical environment, e.g. pH, E_h

BUT

 Microbial processes are missing in the current strategic research agenda (SRA)

Main microbial processes

- Microbially induced degradation
 - Corrosion of metal canisters
 - Degradation of buffer, backfill and cement
- Gases
 - Production –
 - Consumption +
- Migration
 - Mobilisation –
 - Immobilisation +

Degradation 1

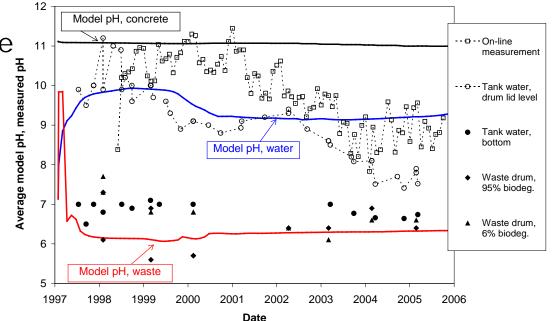
- Corrosion of metal canisters
 - Sulphide production
 - H₂ from anaerobic corrosion of metals contribute to sulphide production.
- Uncertainties
 - Microbial kinetics
 - Mass balances



Degradation 2

- Degradation of buffer and backfill
 - Iron-reduction of structural ferric iron in smectite clays – reduced swelling capacity
- Uncertainties
 - Kinetics (metabolism)
 - Mass balances

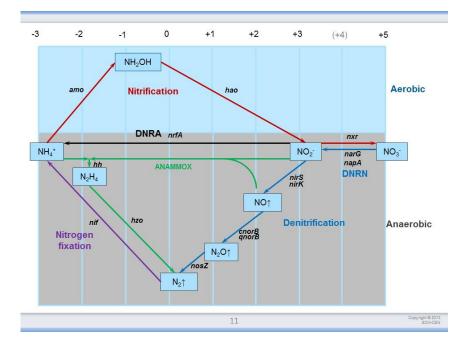
80 Iron-reducing bacteria g⁻¹


Degradation 3

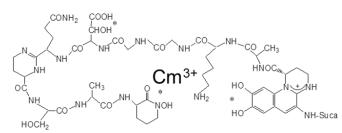
Degradation of cement and lowering of pH

- <u>Heterogeneity</u> in pH allows microbial processes to develop at neutral pH in waste drums
- Eventually, concrete buffered alkaline water is neutralised
- Fermenting bacteria produce acids
- Uncertainties

0


 Microbial influence on pH?

Gases


- Production
 - CO₂ and CH₄ from
 - organic wastes (analogue: biogas)
 - reactor)
 - N₂ and N₂O from some waste forms

- Consumption
 - 4H₂ + CO₂ = CH₄ + 2H₂O ("5 becomes 1")
 - 4H₂ + SO₄²⁻ = S²⁻ + 4H₂O ("4 becomes 0")

Migration 1

O-PO₂H-Cm²⁺

Microbial ce

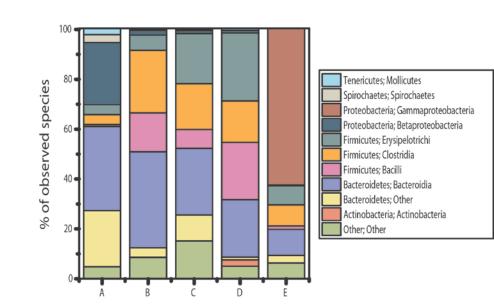
- Mobilisation
 - Microbial complex formers
 - Low molecular weight acids
 - Sorption to free-living cells and viruses

C00

Microbial cel

O-PO₂H

- Uncertainty
 - Importance?
 - Impact on the safety case?



Migration 2

- Immobilisation +
 - Biofilms sorb radionuclides
 - Microbial reduction can immobilize radionuclides, e.g. U, Tc, Np, Se.
 - Degradation of organic complexing agents, e.g. isosaccharinic acids.
 - Coupled processes
- Uncertainty
 - Importance?
 - Impact on the safety case?

The safety case can benefit from:

- New knowledge in geomicrobiology and the deep biosphere
- Probing microbial processes using new and advanced genome technologies
- Advances in imaging and spectroscopy

SRA Key topic 1 safety case

- "The safety case must be able to describe the evolution of the repository in a way that can be seen as a reasonable representation of what might happen and that also gives a clear indication of uncertainties in the description".
- WG-5 noted that the SRA lacks representation of microbial processes and indication of uncertainties caused by microbial processes.

A technical and scientific working group (TSWG) on biological processes next?

- Review past and present research and models.
- Understand uncertainties in the safety case caused by microbial processes.
- Evaluate how knowledge about microbial processes can be merged into present safety models and concepts.
- Identify gaps in knowledge and suggest research needs.
- Define a scope of a proposal to be submitted to an EC call or a specific project co financed by the WMOs.