Project Background

- Innovate UK funded collaborative R&D project
 - Pairs SME with large business to bring a technology into the market

- Project Partners – Costain, Tetronics International and others

- Demonstration of nuclear-ready operations
 - Concept Design
 - Safety Case
 - Demonstration Plant
Simulants

- Magnox pond sludge
- SIXEP sand/clino
 - High radiation - shielding and remote operation
 - Current priority
 - Natural organics
 - Continuity of development

- Future decommissioning wastes
 - High contamination
 - Very large volume arisings in the future
 - Heterogeneity - large metal items
 - Synthetic organics
Plasma Furnace Detail

Twin electrodes (2-axes actuation)
Furnace roof and exhaust duct
Furnace shell
Crucible clamps
Water cooled ‘clam shell’
Scissor lift trolley
Demonstration Plant

- Feeding of sludges and fluxes
- Twin electrodes
- Plant cell (cage)
- Plasma furnace
- Water-cooled ‘clam shell’ and base
- Remote loading and unloading of crucible
- Simulated final waste container
The Developed Furnace

• From Engineering Schedule
 • Crucible Clamps and Seal
 • Electrode Clamps and Seal
 • Replaceable roof refractory
 • Remote drives
Wasteform

Crucible seal
Crucible liner
Refractory
Vitrified waste
Results of Trials

~60% bulk waste volume reduction

>95% of caesium retained in wasteform (single pass)

Uniform, unreactive monolith
Product

Single-skinned waste container

Grout

Crucible liner

Refractory

Vitrified waste
Product

500 litre drum

3m³ drum
Suitable Waste Types

• Wastes with immobilisation issues
 - Sludges
 - Containers
 - Particles
 - Oils and greases

• Wastes which are reactive during processing

• Wastes which otherwise remain reactive during storage
Future work

• This project value ~£1.8M - a lot of this funded by project partners
• Next stage will be much more expensive.

• Involvement in Integrated Project Team
• Commercial Development on lower activity wastes

• Graphite Gasification with UoM, MDecon and Tetronics
Thankyou