Sand/Bentonite Homogeneity and the performance of EGTS

N. Giroud, P. Marschall & T. Spillmann

IGD-TP EF6 – 3. Nov. 2015

S/B in Engineered Gas Transport Systems

Objective

- Increase gas transport capacity of L/ILW repository seals to limit gas pressure build up
 - High gas permeability Low hydraulic conductivity

Concept

 Laboratory tests show air entry pressures in the range of 10-40 kPa above pore pressure for 70/30 or 80/20 %wt sand/bentonite mixtures

Parameters controlling gas and water permeability are:

Sand/bentonite ratio

Emplacement density

 Large scale tests aim at validating the upscaling of properties from lab scale to full scale

Seal
□ Plug

S/B Properties

As compacted S/B

- With low bentonite content, the hydraulic properties of the mixture are very sensitive to the emplacement density
- In small-scale laboratory experiments, homogeneity is easily achieved, and confirmed by isotropic gas and water transport properties
- In large scale experiments, emplacement technique may play an important role leading to local heterogeneities and large scale anisotropy.

Smectite quasicrystal

Bentonite cluster

Porosity distribution in sand/bentonite layers

FORGE Mock-up experiment in Grimsel Test Site was dismantled early 2015

- → X-ray CT shows a clear gradient of macroporosity (81µm voxel size)
- → Water permeability and gas entry pressure measurements are ongoing in 2 orthogonal directions

Summary

- Emplacement technique has a clear effect on the isotropy of the S/B
- Effect of anisotropy on gas and water transport properties still to be quantified
- In case of anisotropic properties, the direction of filling is crucial for the performance of the EGTS
 - Flow // layering → highest porosity determines permeability

Processes potentially affecting homogeneity of S/B:

- Density variations due to compaction technique
- Phase segregation during emplacement
- Bentonite particle migration by gas transport may create local heterogeneities

Outlook

- Additional experimental work is needed to quantify the effect of S/B emplacement technique
- Pre-tests will address dependence of transport properties on emplacement technique
 - Several-dm scale emplacement tests will be subsampled and measured at EPFL for water/gas permeability and air entry pressure
 - Tests should determine if/how anisotropy can be minimized
- Pre-test results will be used to set up a new mock-up experiment at the Grimsel Test Site
- Future experiments should address phase segregation due to
 - emplacement, and
 - gas transport.

thank you for your attention

nagra.