

UO₂ interactions inside canister conditions

IGD-TP 6th Exchange Forum, November 3-4th 2015, London, UK

Kaija Ollila, Emmi Myllykylä, Leena Carpen

Previous studies (IN-CAN processes, NF-PRO) : Dissolution rates of U from 0, 5, 10% ²³³U-doped UO₂ samples in <u>synthetic groundwaters</u> (fraction/yr)

- Reducing conditions achieved by corroding iron in solution (Ar atmosphere)
- No indication of an effect of alpha radiolysis
- The rate decreased in 1M NaCl solution
- $> 2 \times 10^{-8}$ to 1 x 10⁻⁷ fraction/yr
- U concentrations close to the detection limit of the analytical method (ICP-MS)

Previous studies (REDUPP): Dissolution rates of U from 0, 5, 10% ²³³U-doped UO₂ samples in <u>natural groundwaters</u> (fraction/yr)

- > Dissolution rates generally higher than in synthetic groundwaters, > 10^{-7} fraction/yr
- Lowest dissolution rates in saline OL-KR5 groundwater at higher SA/V
- The rate for the 10% ²³³U-doped UO₂ higher than the rate for 5% ²³³U-doped UO₂ at higher SA/V in brackish groundwater, suggesting the effect of alpha radiolysis
- High Resolution ICP-MS

SEM/EDS of Fe surface (a test with 5 % 233 U-doped UO₂, SA/V= 15 m⁻¹)

black coloured precipitates on the surface of iron strips, especially in the tests with higher SA/V in natural groundwaters

- > SEM/EDS analyses \Rightarrow U, Si
- The amounts of precipitates too small for XRD

WG4 – Spent fuel dissolution & chemistry in container: UO₂ interactions inside canister conditions

- To gain improved understanding of the chemical and corrosion processes and their effects on UO₂ dissolution mechanisms and rates under in-canister conditions after water intrusion
- The role of iron and other metal surfaces (secondary phases) and of groundwater composition (e.g. Si and sulphide)

Dissolution experiments with Gd-doped and alpha-doped UO₂ in simulated canister conditions

- magnetite, cast iron, copper, H₂
- batch experiments in Ar atmosphere
- an autoclave system to maintain gas phase composition (H₂)
- tracer methods

Natural groundwaters

Natural groundwater with elevated Si content

Solid UO₂ samples

UO ₂ phase	[²³³ U]	[²³⁵ U]	[²³⁸ U]	²³⁵ U/ ²³⁸ U	Samples
	(%)	(%)	(%)		(g)
Un-doped	0	2.82	97.18	0.029	1, 1, 3 g
5% ²³³ U-doped	5.0	4.5	90.5	0.050	1, 1, 3 g
15.7 MBq/g					
10% ²³³ U- doped	10.0	4.5	85.5	0.053	1, 1, 2.5 g
31.4 MBq/g					

 $UO_2 (10 \% {}^{233}U) \leftrightarrow$ alpha activity of spent fuel 3000 years after disposal $UO_2 (5 \% {}^{233}U) \leftrightarrow$ alpha activity of spent fuel 10 000 years after disposal

Gd-doped UO₂, 6% Gd₂O₃ (0.71% U-235)

The availability of alpha- and Cr_2O_3/Al_2O_3 - doped UO₂ is investigated

Effect of galvanic corrosion Leena Carpen, VTT

- In the case of water intrusion to the inside of canister the possible galvanic corrosion may have an effect to the dissolution of UO₂
- Galvanic corrosion is an <u>electrochemical</u> process in which one <u>metal</u> <u>corrodes</u> preferentially to another when both metals are in electrical contact, in the presence of an <u>electrolyte</u>
- Galvanic corrosion can accelerate the corrosion of less nobel metal parts and thus change the chemistry of the ground water
- Besides copper and cast iron also materials in fuel assembly will produce galvanic contacts with several different metal types (zircalloy, stainless steels, inconel)

Thanks for your attention!

*.*k.

Click to add title

Place for a photo (no lines around photo)

««»»»

Place for a photo (no lines around photo)

Click to add title

TECHNOLOGY FOR BUSINESS

 $b \overline{w}$