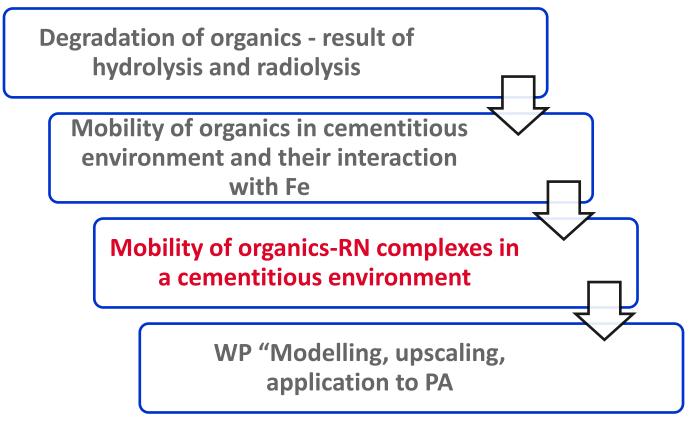
rom research to industry


6^{тн} IGD-TP EXCHANGE FORUM (EF6) WG3 – Cement Organics Radionuclides Interactions - CORI

TOPIC: "MOBILITY OF ORGANICS-RN COMPLEXES IN A CEMENTITIOUS ENVIRONMENT"

NOVEMBER 3-4, 2015 LONDON, UK FROM RESEARCH TO INDUSTRY

Ceaden scheme of the cori project

Work Packages

→ <u>+ Management Team & Training/Dissemination</u>

Ceaden"MOBILITY OF ORGANICS-RN COMPLEXES IN A
CEMENTITIOUS ENVIRONMENT" (1/2)

Context

- In ternary systems (Cements-Organics-RNs), the mobility of RNs can be influenced by several processes
 - RN complexation in the aqueous phase by organic molecules acting as ligands
 - competition effects for the surface adsorption sites of cement-based materials
 - or synergic processes
- In PA exercise, this influence is usually considered as a phenomenon decreasing the adsorption (K_d) of RNs onto solid surfaces
 - using adsorption "reduction factors" (and also solubility enhancement factors)
 - applied to the sensitive RNs
 - strongly linked to the nature and amount of organics released into the system, their complexation properties as well as their own mobility
 - → Link to TOPICS "Degradation" & "Mobility of Organics"

Ceaden"MOBILITY OF ORGANICS-RN COMPLEXES IN A
CEMENTITIOUS ENVIRONMENT" (2/2)

Objectives

As part of the CORI Project, this TOPIC is dedicated to strengthen the understanding on organics/RNs complexes mobility in cement-based systems

 Assess and quantify the mechanisms that take place at microscopic scale in relevant ternary systems

Provide new data on adsorption and radionuclide transport at macroscopic scale to be used in the integrated modelling approach

→ Link to TOPIC "Modelling, upscaling, application to PA"

From WMOs priorities and expectations

	WMOs	Materials	Organic species	Radionuclides		
	ANDRA NAGRA ONDRAF.NIRAS RWM SKB SURAO	 CEM I/II CEM V Armoured concrete systems Influence of materials degradation 	Priorities towards complexing capacity			
	Data needed		Monocarboxylic acids Dicarboxylic acids			
•	Description of chemical interactions Transport		 concrete systems Influence of materials 	Aromatic carboxylic acids Aminocarboxylic acids Hydrocarboxylic acids Influence of organic mixtures	Transition elements Lanthanides Actinides Toxic element	
•	parameters In anoxic conditions		(no ¹⁴ C bearing molecules in this TOPIC)			

→ The challenge is to select a set of relevant systems to be studied among all the possibilities

Ceaden teams that have expressed their interest

Two meetings (March/Sept.) and one questionnaire (June)

- 14 Organizations / Universities have shown interest and/or proposed some work
 - Amphos 21
 - CEA (proposed as TOPIC Leader)
 - Juelich
 - KIT-INE
 - SCK.CEN
 - Subatech
 - TERAMED

- University CTU
- University Heidelberg
- University Loughborough
- University Mainz
- University Manchester
- University Potsdam (UPPC)
- University Sheffield

→ Collaboration not closed, new partners are welcome

Ceaden ATTEMPT TO SELECT ORGANIC SPECIES

Discussion from WP "Mobility of Organics"

to remind the tentative selection of representative organic ligands

Organic	Subgroup	Representation	Analogies			
acids/alcohols and/or aldehydes C1-C2	Cationic and Anionic resins/ ¹⁴ C-bearing organic compounds	Short-chained acids, alcohols and /or aldehydes	Malonic, Succinic			
Adipic acid	PVC/PUR	Long-chained dicarboxylic acid	Glutaric, Pimelic, Suberic…			
Phthalic acid	PVC	Aromaticdicarboxylic acid	Succinic			
ISA	Cellulosic wastes	Hydroxicarboxylic acid	Citric, Gluconic			
Acetic	PCE/CAE	Mono(poly)carboxylic acid	Formic, Butyric, Acetic			
EDTA	Decontamination and cleaning	Aminocarboxylicacid	DTPA, NTA			

Ceaden ATTEMPT TO SELECT RADIONUCLIDES (1/2)

Transition elements/Lanthanides/Actinides/Toxic element

1 H Li	2 Be		Alk Oth Lar	nsitio aline ner no nthan ali me	earth nmet oids	meta	ls	0	Halog Actine	oids netals		B	14 C	15 N	16 0	17 F	18 He Ne	
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Ρ	S	CI	Ar	
к	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xē	
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ті	Pb	ві	Po	At	Rn	
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo	
1 Soli	d																	
Liqu			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	
Gas Unk	: :nowi	n L	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

From expectations (focused on cationic species)

- attempt to reduce the list by highlighting specific elements (non exclusive list)

 \rightarrow Ni, Pb, Am, Ln(III), Pu, U selected as a 1st set of interesting elements

FROM RESEARCH TO INDUSTRY

Ceaden ATTEMPT TO SELECT RADIONUCLIDES (2/2)

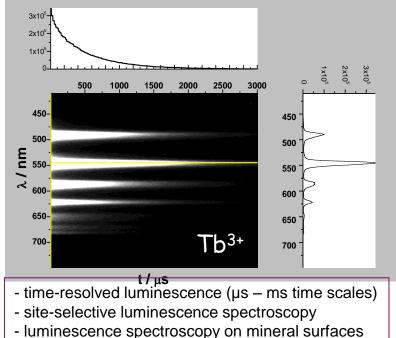
Partners' proposals so far

Team	Radionuclides proposed	Type of experiments proposed						
Amphos21	Ni, Eu, U / Cs, Se, Th	Batch sorption experiments						
CEA	Cs, Ni, Eu, Se, Pu, U, Th	Batch sorption experiments/Diffusion experiments						
Juelich	Ra, Sn, Tc, Se, Mo, Ni, ¹⁴ C	Batch sorption experiments						
KIT-INE	Pu, Tc	Batch sorption experiments/Diffusion experiments						
SCK.CEN	Transition metals, La/Ac	Diffusion experiments						
Subatech	U, Se, actinides, Sr, Ni	Batch sorption experiments/Diffusion experiments / Computational molecular modelling						
Univ. CTU	Ra, Th, U, Ac, Am, Cm, Cl, ³ H	Diffusion experiments						
Univ. Loughborough	Ni, U, Am, Pu	Diffusion experiments						
Univ. Manchester	U, Tc, Np, Pu, I, Am, Sr, Cs, ¹⁴ C	Batch sorption experiments/Column systems						
Univ. Potsdam	Ln(III), U	Characterization of surface complexes and alteration						
Univ. Sheffield	U, Tc, Np, Am, Pu, non-radioactive e.g. Cs, I, Cl	Batch sorption experiments/Single-pass flow through						

no particular difficulty identified to meet the needs

 \rightarrow We should be able to build a set of complementary studies

Ceaden Description of Activities in this wp (1/2)


Work on dispersed cement-based materials

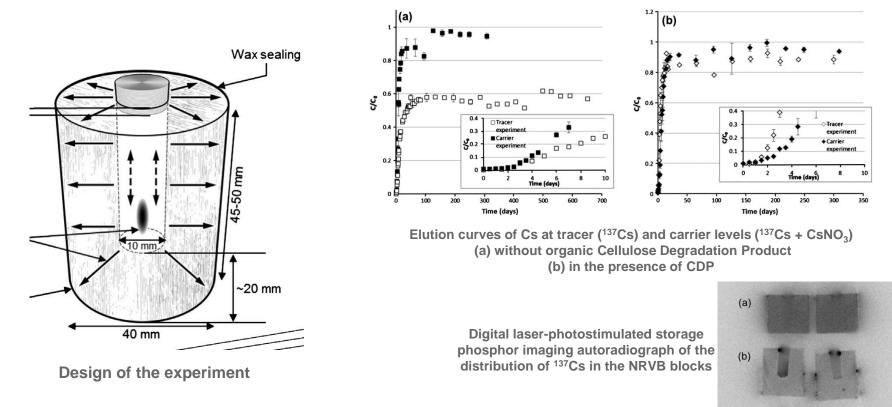
- **Physicochemical interactions** between RNs and cementitious materials in presence of organic compounds, emphasis on
 - interactions with single cement phases and bulk systems (HCP)
 - solubility/speciation of RNs in cement porewater in presence of organic compounds
 - effect of materials degradation
 - investigation of solid surfaces after interaction
 - adsorption kinetics and isotherms
 - effect of single organics / cocktails of organics and role of iron
 - molecular modelling (MD techniques)
 - → <u>Mechanistic description and quantitative adsorption models</u>
 - → Input data for TOPIC "Modelling, upscaling, application to PA"

Speciation analysis of organic-lanthanide complexes on cement (CSH-phase or other...) surfaces

- Lanthanide(III)-ions (as analogs)
 - **—** Tb³⁺, Sm³⁺, Dy³⁺, Eu³⁺
 - 🛑 (Uranyl)
- System parameters
 - 🛑 pH
 - Ionic strength (up to sea water)
 - **(**pCO₂)
- Methods
 - Time resolved laser fluorescence spectroscopy
 - Steady state luminescence spectroscopy
 - Raman spectroscopy
 - SFG spectroscopy

Ceaden Description of Activities in this WP (2/2)

Work on compacted cementitious materials


- **Migration experiments** of RNs in cementitious materials in presence of organic compounds
 - in or through-diffusion experiments depending on the theoretical mobility of the RNs studied
 - **column** experiments
 - solution analyses → diffusive fluxes, elution curves
 - images or profile measurements in the solid
 - effect of material degradation
 - effect of single organics / cocktails of organics
 - → Quantitative transport models
 - → Input data for TOPIC "Modelling, upscaling, application to PA"

(c)

Radial diffusion through cement cylinder

\rightarrow Extraction of transport parameters

→ Possible analysis/imaging of the solid afterwards

Felipe-Sotelo et al. (2014). Radial diffusion of radiocaesium and radioiodide through cementitious Backfill. Phys. Chem. Earth **70–71**, 60–70

Thank you for your attention !

Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 69 08 32 10 F. +33 (0)1 69 08 32 42

DPC SECR

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

AMPHOS²¹

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

JG U JOHANNES GUTENBERG UNIVERSITÄT MAINZ

