

The innovative plasma tilting furnace for treatment of radioactive and problematic chemical waste

Jan Deckers

London November 2015

Belgoprocess

- Private company
- Established in 1984
- Operations for 2 sites
- 330 employees
- Turnover: € 50 million

Location

- Processing and temporary storage of radioactive waste: LW, ILW, HLW
- Decommissioning, dismantling & decontamination of obsolete nuclear facilities
- Integrated safety, environment and quality management
- Valorization of knowhow

Consulting/dienstenverlening

Plasma technology

Features of plasma technology

- ✓ Developed in the 60's for making high intense heat source for testing heat shields for the space industry
- ✓ Used for melting into metallurgical industry.
- ✓ Used as heat source for treatment/melting hazardous waste. Typical temp is 5000°C
- ✓ After more than 4 decades first application for radioactive waste treatment was taken into operation in 2004
- ✓ With plasma, the organic material is vaporised in volatile hydrocarbons, carbon monoxide, etc. while non-combustible and other inorganic constituents are melted and transformed into glassy slag

Introduction Plasma

• Due to the higher temperature of the plasma the range of applicable complex waste types is much greater →organic material is gasified and iron, concrete, glass and other inorganic material is melted to form a slag

Applicability of thermal technologies to common waste types

Technology	Waste type							
	Organic Liquids	Inorganic Liquids	Organic Solids	Inorganic Solids	Mixed Organic-	Mixed organic-	Spent resins	
					inorganic solids	inorganic liquids		
Calcination	NA	Α	NA	NA	NA	NA	NA	
High temperature incineration	Α	Α	Α	NA*	A*	Α	Α	
Incineration	Α	Α	Α	NA*	A*	Α	Α	
Melting	NA	NA	NA	Α	NA	NA	NA	
Molten salt oxidation	Α	NA	Α	LA	LA	LA	Α	
Plasma	Α	Α	Α	Α	Α	Α	Α	
Pyrolysis	Α	NA	A**	A**	A**	Α	Α	
Synroc	NA	NA	Α	Α	Α	NA	NA	
Thermo-chemical treatment	NA	NA	Α	Α	Α	NA	А	
Vitrification	NA	Α	A**	A**	A**	NA	Α	
Wet combustion	А	NA	Α	NA	NA	NA	A***	
• Technology is applicable to this v	waste type.							
NA Technology is not applicable to	this waste type.							
A Technology has limited applicat	oility to this waste typ	e.						
Small pieces of inorganic are acce	eptable without caus	ing damage or pluggi	ng of the system					

*** Applicable only to organic spent resins

** Applicable only for the granular or powder form of this waste type.

IAEA TECDOC 1527

Plasma technology: Technological benefits

- One single process can treat many RAW streams
 - Applicable to solid organic and inorganic wastes, including asbestos
 - drummed spent resins and liquid wastes
- Process fulfils ALARA principles.
 - Waste packages can be treated "as is" and fed unopened without needed of pre-treatment or sorting out
 - Eliminating risks for contamination and limitation of dose uptake
- A robust waste form is obtained (similar as the vitrification)
 - free from any organic material and liquid/sludge
 - In accordance with the most stringent WAC for long term storage and disposal.
 - Suitable to recondition historical waste which do not fulfil WAC
- High volume reduction factor that minimises the overall cost for storage and final disposal

Industrial facility: Plasma plant ZWILAG in Switzerland

Successfully operated by ZWILAG from mid 2004

- Nowadays: 2 campaigns of 10 weeks per year
- About 500 drums or 100 ton per campaign
- About 140 pours per campaign
- End 2013: Total 8000 drums or 1300 ton
- Run on a commercial base

Industrial facility under construction PMF at Kozloduy NPP

Key project figures

- EPC Turn key project funded by EBRD & KNPP
- Signature of Contract: April 2009
- Supplier: Joint Venture (Iberdrola Ingeniería S.A.U Belgoprocess N.V.)
- Basic project data:
 - Treatment of Low and Intermediate Level Radioactive (Category 2a)
 - Inlet throughput: 65 kg/h, yearly: 250 ton/year
 - VRFs:
 - Un-compacted ≈ 80
 - Compacted ≈ 20
 - Supercompacted ≈ 2

waste

Kozloduy NPP area

Waste to be treated

KNPP Radwaste types to be treated:

- Untreated waste: Organic waste in bags
- Pre-compacted waste: Mixture of organic / inorganic in 200 l steel drums
- Supercompacted waste (organic, wood, concrete)
- Liquid waste such as oils
- Spent resins
- Category 2a (*) 3,23E+05 Bq/kg (Co60: 57%, Cs137: 20%, others: 23%)
- Difficult to sort out (pre-compacted and supercompacted)

Flow diagram PMF

- Conveying, shredding and feeding system (A)
- Primary Treatment chamber with Plasma system (B)
- Off-gas cooling and cleaning system (C)
- Slag collection and cooling system (D)

Most significant equipment in KNPP PMF

- Plasma treatment chamber > fix furnace with tilt design
- Torch > 500 kW non-transferred arc plasma torch; temp 5000°C
- Feeding system > continuos through a 2 stage shredder
- Off-gas system > based on CILVA facility at Belgoprocess site
- Slag collection chamber > based on ZWILAG design

Main equipment: Non tranferrable torch

Main equipment: Shredder components

- Primary and secondary shredder
- Screw feeder
- Driving force is system has to accept200 L Drums

Main equipment: Secondary Chamber (STC) and Off Gas System

- STC and off gas similar as conventional radwaste incinerators (based on CILVA incinertor at BP site))
- STC → the syngas, hydrocarbons containing Cl and S are oxidized to primary components such as CO2, H20, SO2 and HCl
- Off gas:
 - Boiler
 - Bag filter and HEPA filters
 - Srubber unit
 - Extraction fans
 - DENOX
- Released gases → Directive 2000/76/EC

Main equipment: Secondary chamber (STC) and off gas system

Emissions level

mg/Nm³ (1) corrected to 11% O2	EC Directive 2000/76/EC			
	Daily average values	typical measurement results		
Total dust	10	<1		
CO	50	16		
TOC	10	<2		
HCI	10	1		
HF	1	0,18		
SO ₂	50	15		
NOX	400	<200		
Heavy metals				
□ ∑ Cd, Tl	0,05 (2)	<0,037		
□ Hg	0,05 (2)	<0,01		
□ ∑ Sb, As, Pb,	0,5 (2)	<0,028		
Cr, Cu, Mn, Ni				
V, Sn				
Dioxins and furanen: ng/Nm³	0,1 (3)	0,04		

(1) Emissions are standardized at the following conditions: temperature: 273 $^{\circ}$ K; pressure: 101,3 kPa; 11 $^{\circ}$ O₂; dry gas

- (2) average values over sample period min. 30 min. max. 8 hours
- (3) average values over sample period min. 6 hours max. 8 hours

Inplantation in building AB-2

Project Planning PMF facility

- EIA (environmental report) 2010
- ISAR (safety report) Rev1 2010
- Approval Technical Design: 10/11/2011
- Approval Detailed Design: 07/05/2012
- FAT testing major equipment: April-June 2013
- Transport equipment to Kozloduy: Sept Dec 2013
- Civil works : Aug 2015
- Commissioning and SAT in KNPP: mid 2016

FAT Slag Collection Chamber

FAT Shredder

FAT Shredder

- Purpose is shredding:
 - bagged waste,
 - drummed organic /inorganic waste (metal, concrete, building material, brics)
 - Supercompacted wood and concrete
- Total shredded: at least 50drums
- Shredded metals and concrete, brics send to Morcenx for intergration test

Video drum <u>5655.</u>

Video feeder tube <u>5654.</u>

FAT Off Gas

- Biggest mechanical and PLC part of the PMF facility
- Tests were carried on particulary:
 - PLC program
 - Simulation alarms
 - Control algorithm such as underpressure control, temperature control
 - Taking over redundant equipment

FAT and integration test Plasma furnace and feeder

Integration test with srew feeder July 2013

FAT and integration test Plasma furnace and feeder

- Testing with only inorganic waste
- Test with different compositions which are representative for the real RA waste:
 - Concrete, soil, sand, Al, Steel (with and without additives)
 - Concrete, steel, brick (with and without additives)
 - Concrete, building debries, steel, additives
- Prepare batches of 500kg → about 200 L of slag;
 170 L is poured rest stays in furnace
- Torch has operated for about 200h; easily another 200h → far above guaranteed lifetime of 100h of the upstream electrode

FAT and integration test Plasma furnace and feeder

Conclusions

- FAT test of major equipment and different compositions was successfully carried out and is an important milestone for the project.
- Intregration test with plasma furnace and screw feeder give good confidence into the future operation of the PMF facility and shows the system is proven technology.
- We are acting as a process provider and take care for full integration of the radioactive waste treatment and use plasma torches as a tool.

