

Application of Joule
Heated Ceramic Melter
(JHCM) Technology for
Stabilization of
Radioactive waste in the
United States

November 3, 2015

Energy Solutions

and

Ian L. Pegg

The Catholic University of America, Vitreous State Laboratory

Introduction / Agenda

Purpose:

To share the U.S. operating plant experience in thermal treatment of radioactive liquids, sludges, and slurries through vitrification utilizing Joule Heated Ceramic line Melter (JHCM) technology.

Agenda:

- Background
 - Vitrification process
 - What is a JHCM
 - Technology Development History
 - Tailoring the technology to the waste (process optimization)
- Selected Projects
 - West Valley Demonstration Project Vitrification Plant
 - Defense Waste Processing Facility
 - M-Area Waste Treatment Project
 - Waste Treatment Plant LAW Plant

Vitrification Process

- Waste Preparation
 - The waste is received and sampled to confirm composition
 - Solids content is adjusted (evaporation or dilution)
 - Glass forming chemicals are add (Silica, Borax, Sodium carbonate, etc.)
 - Waste feed is continuously added to the melter

- Water is evaporated
- Salts melt and decompose
- Oxides react and melt to form molten glass
- Organics are pyrolyzed and oxidized
- Most metals, if present, are oxidized
 - There are limits on amount and particle size
- Most species are incorporated into silicate glasses as their oxides; exceptions include Cl, F, I which are only incorporate to a limited extent.
- Volatile species (such as H₂O, CO₂, NO_x, etc.) are completely lost to the off-gas stream
 - Typically contributes to significant volume reduction
- Other species are retained in the glass melt to varying extents
- Glass is discharged into containers and cooled forming final disposal package

What is a JHCM

- Joule Heated Ceramic Melter (JHCM) description:
 - Refractory/Ceramic lined vessel for corrosion resistance
 - Sealed vessel (radionuclide/hazardous material confinement)
 - Submerged, permanent electrodes
 - The glass is the heating element
 - A/C power
 - Vertical Melting process
 - Feed introduced from above
 - Reacts on the surface of the glass
 - Glass discharged from near base of glass pool
 - Actively mixed glass pool to increase processing rate
 - Glass production rate (and waste treatment rate) directly proportional to melt pool surface area (t/m²/d)

View Inside JHCM Plenum

JHCM: Other Facts

- JHCM "Hardware" versus "Software"
 - Hardware physical equipment (i.e., the melter)
 - Software Glass formulation
 - The facility performance can be enhanced through improved glass formulations that are essentially transparent to the engineered facility
 - Waste types/composition can be changed without physical changes
- The benefits of JHCM
 - One step processing (organics destroyed, metals oxidized, all integrated into highly stable glass matrix)
 - Very large waste volume reductions are possible (30 to 50% typical, >85% possible)
 - Reactive properties of the waste are removed
 - Exceptional stability of final waste package
- A note about the cost of vitrification
 - Cost is almost exclusively governed by waste properties and facility design requirements. Not the technology!
 - Level of confinement and shielding required
 - Facility safety related functions
 - For example, the Hanford Waste Treatment Plant (WTP) costs:
 - Facility = \$15,000M
 - 4 melters = \$60M (0.4%)

JHCM Development History

There are more than 4 decades of development and operating experience using JHCM vitrification for treating sludge/slurry waste in the U.S.

Tailoring the technology to the waste

- JHCM technology can be tailored to the waste through variations in the glass forming additives. Widely varying waste composition can be accommodated within an existing facility.
 - Higher waste treatment rate capability translates into cost savings through small plant size and/or reduced operating time
 - Increased waste loading (fraction of glass originating from waste) increases
 waste treatment rate and reduces volume for disposal
 - Increased glass production rate increases waste treatment rate
 - Both factors depend on waste composition and glass composition
 - Optimization of glass composition can have drastic effects on overall process economics
 - Such changes are easy to implement since they do not require hardware changes
 - Complicated by numerous components present in typical wastes
 - Problem in constrained optimization of multiple properties with respect to numerous composition variables
 - Typically requires large data sets and development of glass property-composition models

Waste Treatment Rate

=

Glass Production Rate

X

Waste Loading in Glass

Tailoring: Glass Property Model Example

West Valley Demonstration Project (WVDP)

- Project: Privately owned commercial nuclear fuel reprocessing plant
 - Operate from 1965 1972 using PUREX/THOREX process
 - Abandon in 1980 and taken over by US government for cleanup

- Volume 2500 m³ of HLW stored in **UGSTs**
- Activity 888,000 TBq
- Hazardous content:Low levels of Hg
- Chemical form Sludge high in OH⁻, nitrate, nitrite, chromium, sulfates, halides, organics, etc.

WVDP: Process

- Waste Pretreatment
 - Sludge washed for partial sodium removal (increase waste loading)
 - Ion Exchange (Zeolite) to remove Cs, Pu from liquids.
 - Zeolite blended with sludge for vitrification
 - Effluent cemented for disposal
 - Acidic THOREX stream neutralized and blended into sludge
 - Resultant waste stream was a blend:
 - PUREX sludge
 - THOREX sludge
 - Spent Zeolite media

WVDP: Vitrification Process

- Vitrification Process
 - Waste concentration and glass former addition
 - Vitrification and glass discharge
 - Melter emissions treatment
 - Container sealing and decontamination
 - Remote operation and maintenance

WVDP: Vitrification Plant Layout

WVDP: Melter

Melter parameters:

- 2.2 m² glass surface area
 - ~ 0.9 t glass per day
- Three air-cooled Inconel 690 electrodes
- Three-phase power
- Fused-cast refractory lining
- Water cooled welded SS shell
- Two glass discharge chambers
- Sloped bottom
- Passive thermal expansion control

WVDP: Status

- 6 years of vitrification operations:
 - **-** 1996 2002
- Bulk of waste processed in first two years
- 275 canisters of glass produced (~545 t glass)
- Borosilicate glass waste form
 - Glass formulation developed at Catholic University, Vitreous State Laboratory
 - Glass oxide basis:
 - ~19% PUREX
 - ~5% THOREX
 - ~17% Spent zeolite ion exchange media
- All waste processed and vitrification facility decommissioned
- Facility D&D completed; Facility reused for site D&D

Canisters in Storage

Savannah River

- What is the Savannah River site
 - U.S. Department of Energy nuclear weapons material production site
 - 310 square miles
 - Construction started in 1951
- What is on the site
 - Five large production reactors
 - Two reprocessing facilities
 - Processes used: PUREX and others
 - Tritium production facilities
 - 36 t of weapons grade plutonium produced

Savannah River Waste

- The radioactive waste
 - 136,260 m³ of highly radioactive waste
 - 10.4 million TBq of radioactivity
 - 150,000 t of chemical wastes
 - including nitrate, nitrite, mercury, cyanide, etc.
 - 24 "Single-Shell" Tanks
 - 2,839 to 4,921 m³ capacity
 - 11 have leaked (one to environment)
 - 27 "Double-Shell" Tanks
 - 4,921 m³ capacity
- All Tank waste to be treated
 - Waste is separated into HLW and LAW fractions
 - Sludge washing to remove sodium
 - Liquid
 - Adsorption/filtration for TRU removal
 - Solvent extraction for Cesium removal
 - HLW is being vitrified in the Defense Waste Processing Facility (DWPF)
 - LAW treated through cementation
 - Waste to be processed in a 40 year treatment campaign

Savannah River Process

DWPF: Vitrification Process

Vitrification Process

- Washed sludge received and concentrated (mercury removal)
- Glass frit is added and resulting slurry fed to melter
- Vitrification and glass discharge
- Melter emissions treatment
- Container sealing and decontamination

DWPF: Treatment Technology

Melter Parameters:

- Weight: 58 t
- Exterior dimension (frame): 6.4m (L) x 3.4m (W) x 4.0m (H)
- 2.6 m² molten glass surface area
- 2600 L molten glass pool volume
- Design production capacity 2 t/d (33-45 wt% waste loading)
 - Production rate recently enhanced through active glass pool mixing retrofit
- Installed in remotely operated cell

DWPF: Status

Status

- Commissioned 1996 and in continuous operation for 19 years.
- 20 years of operation remaining to complete waste treatment
- 10,000 t HLW glass produced (3,965 canisters)
- ~26,000 t of glass total to complete treatment (~8,600 canisters)

M-Area

- Title: Savannah River site Materials Area (M-Area) mixed waste treatment project
- Waste
 - 2,500 m³ of Low Level mixed waste (RCRA listed plating line waste)
 - Waste contained in 11 tanks
 - Composition: sludge containing diatomaceous earth and perlite
 - Alkaline waste, high in Na, Al, P, U, Ni, nitrate
- VSL-EnergySolutions team won competitive procurement, 1995 1999
 - R&D, flow-sheet, glass formulation, design, build, operate, deactivate
 - Fixed price

M-Area: Vitrification Process

Glass formulation

- Borosilicate glass formulations developed by Catholic University, Vitreous State Laboratory
- High waste loadings (50-70%)
- Chemical passivation to reduce refractory and electrode corrosion by high Na glass melts
- Excellent product leach resistance

Vitrification process:

- Waste retrieved from tanks, combined with glass forming chemicals, and fed to melter
- Vitrification and glass discharge
 - Glass formed into gems and collected in 270 L drums
- Melter emissions treatment

M-Area: Melter

- Slurry-fed JHCM
 - Mixed LLW + raw chemicals
- 5.0 m² glass surface area
 - Capacity: 5 t glass per day
- Air bubbler array to increase throughput
- Three electrodes
- Two-phase power
- Two air-lift discharge chambers
- Active thermal expansion control
- K3 contact refractory, AZS backup, H plenum, E riser
- Glass containment via thermal profile
- Glass discharged through "Gem" machines (product was glass marbles)

M-Area: Operation

- 44 Feed batches; 102 m³ batch size
 - 489 t of glass product produced
- Very reliability plant operation
 - 80% total cumulative lifetime plant availability
- 2,800 270-liter drums were filled (70% volume reduction)
 - Glass sampled from 5 drums from every batch and subjected to TCLP
 - Every batch met requirements

M-Area: Status

Status

- Waste form delisted by U.S. EPA, allowing on-site disposal as LLRW
- Facility D&D completed with area restored to brown field
- Vitrification technology transferred to and implemented at WTP

Hanford

- What is the Hanford site
 - U.S. Department of Energy nuclear weapons material production site
 - 500 square miles
 - Construction started in 1944 (Pu for Nagasaki bomb)
- What is on the site
 - Nine large production reactors
 - Five reprocessing facilities
 - Processes used: Bismuth phosphate, Uranium recovery, REDOX, PUREX, Cs/Sr recovery, & others
 - 111 t of weapons grade plutonium produced

Hanford

- What happened to the waste
 - The short answer is that it is all still there stored in underground tanks
 - 213,000 m³ of highly radioactive waste
 - 6.5 million TBq of radioactivity
 - 1000 kg of Plutonium in waste
 - 218,000 t of chemical wastes
 - including nitrate, nitrite, chromium (-6), sulfates, halides, organics, etc.
 - 149 "Single-Shell" Tanks
 - 190 to 4,000 m³ capacity
 - 67 known or suspect leaking tanks
 - 4,000 m³ and 37,000 TBq leaked to the soil
 - 28 "Double-Shell" Tanks
 - 4,000 to 4,400 m³ capacity
 - 1 confirmed leaking into secondary containment
- All Tank Waste to be Vitrified
 - Waste to be separated into HLW and LAW fractions
 - HLW and LAW to be vitrified by separate facilities
 - Waste to be processed in a 30 Year treatment campaign

ENERGY SOLUTIONS Hanford Waste Treatment Plant (WTP)

Maximize Mass **Pretreatment** Ultrafiltration Ion Exchange (Cs) Maximize SUPERNATANT Activity **SLUDGE**

LAW

Vitrification (90+% ofwaste mass)

Supernatant - NaNO₃

- Meet WAC
- **Maximize Waste Loading**
- Manage Sulfate
- **Manage Halides**
- **Glass Product Stays at Hanford**

HLW

Vitrification (90+% of waste activity)

Sludge

- Meet WAC
- **Maximize Waste Loading**
- Maximize Melter DF's
- **Manage Noble Metals**
- **Glass Product to be** transferred to Yucca Mountain or **Alternative**

WTP: Design Requirements

- WTP elected to vitrify waste utilizing JHCM
- WTP processing requirements were extremely challenging
 - HLW glass production rate 6 t/d @ 0.4 t/m²/d rate
 - LAW glass production rate 30 t/d @ 1.0 t/m²/d rate
- The state of technology at the time (1998) in US
 - HLW 1 MT/day from DWPF and WVDP (2.5 m² of glass pool area)
 - LAW 5 MT/day from SRS M-Area facility (5 m² of glass pool area)
- Key issues that needed to be solved:
 - Very large physical melter size scale up
 - HLW 2.2 to 4 m²; LAW 5 to 10 m²
 - Very large processing rate scale up
 - HLW − 1.0 to 6 MT/day; LAW − 5 to 30 MT/day
 - Troublesome waste components
 - HLW Pt/Rh/Ru, PO₄, Bi, Cr, S; LAW S, Cl, and much Na
 - Widely varying waste composition (BiPO₄, Redox, & Purex processes;
 Uranium and Thorium fuel source)

WTP: LAW Vitrification Process

WTP: LAW Facility Layout

WTP: Treatment Technology - LAW

- LAW Production = 30 t glass/day (achieved through active glass pool mixing technology)
 - Weight: 299 t
 - Exterior Dimensions: $9m (L) \times 6.6m (W) \times 4.8m (H)$
 - 10 m² glass pool surface area
 - 7630 L molten glass pool volume
 - Design production: 2 melters at 15 t/d each (35-45% waste loading)
 - Installed in gallery (melter provides shielding)

LAW Melter Gallery

WTP: LAW Status

Status

- Construction of the plant continues
- Highly successful development program
 - Glass formulations have been developed by the VSL for all waste streams
 - Large increases in glass waste loadings have been achieved reducing the final waste volume for disposal
- Hot operations scheduled for 2022
 - LAW facility to start first
 - Followed by pretreatment and HLW
- Glass to be produced
 - LAW 527,838 t (95,825 LAW containers) Local shallow burial
 - HLW 31,968 t (10,586 HLW canisters) Geologic repository

Waste Treatment Plant (WTP)

• The numbers:

- \$15,000,000,000 and >20 years to design/build
- 263,000 cubic yards of concrete (26,300 concrete trucks)
- 930,000 feet of piping (170 miles)
- 40,000 tons of structural steel, enough to build three Eiffel Towers
- 5,000,000 feet of cable and wire (900 miles)

LAW Facility

- LAW Vitrification Facility
 - 89% design complete
 - 86% procurement complete
 - 67% construction complete

Conclusion

Conclusions

- JHCM has successfully treated sludge/slurry wastes at production scale
- Substantial cost savings have been achieved through waste volume reduction
- The treated waste forms are highly stable and have meet all disposal requirements

Contact information:

— Eric Smith: <u>esmith@energysolutions.com</u>

Brad Bowan: <u>BBowan@EnergySolutions.com</u>

– Ian Pegg: <u>ianp@vsl.cua.edu</u>

