Application of Joule Heated Ceramic Melter (JHCM) Technology for Stabilization of Radioactive waste in the United States

November 3, 2015

Eric C Smith* and Brad Bowen
EnergySolutions
and
Ian L. Pegg
The Catholic University of America, Vitreous State Laboratory
Introduction / Agenda

Purpose:
To share the U.S. operating plant experience in thermal treatment of radioactive liquids, sludges, and slurries through vitrification utilizing Joule Heated Ceramic line Melter (JHCM) technology.

Agenda:
– Background
 • Vitrification process
 • What is a JHCM
 • Technology Development History
 • Tailoring the technology to the waste (process optimization)
– Selected Projects
 • West Valley Demonstration Project Vitrification Plant
 • Defense Waste Processing Facility
 • M-Area Waste Treatment Project
 • Waste Treatment Plant – LAW Plant
Vitrification Process

- **Waste Preparation**
 - The waste is received and sampled to confirm composition
 - Solids content is adjusted (evaporation or dilution)
 - Glass forming chemicals are added (Silica, Borax, Sodium carbonate, etc.)
 - Waste feed is continuously added to the melter

- **Vitrification**
 - Water is evaporated
 - Salts melt and decompose
 - Oxides react and melt to form molten glass
 - Organics are pyrolyzed and oxidized
 - Most metals, if present, are oxidized
 - There are limits on amount and particle size
 - Most species are incorporated into silicate glasses as their oxides; exceptions include Cl, F, I which are only incorporated to a limited extent.
 - Volatile species (such as H₂O, CO₂, NOₓ, etc.) are completely lost to the off-gas stream
 - Typically contributes to significant volume reduction
 - Other species are retained in the glass melt to varying extents

- Glass is discharged into containers and cooled forming final disposal package
What is a JHCM

- Joule Heated Ceramic Melter (JHCM) description:
 - Refractory/Ceramic lined vessel for corrosion resistance
 - Sealed vessel (radionuclide/hazardous material confinement)
 - Submerged, permanent electrodes
 - The glass is the heating element
 - A/C power
 - Vertical Melting process
 - Feed introduced from above
 - Reacts on the surface of the glass
 - Glass discharged from near base of glass pool
 - Actively mixed glass pool to increase processing rate
 - Glass production rate (and waste treatment rate) directly proportional to melt pool surface area (t/m²/d)
JHCM: Other Facts

• JHCM “Hardware” versus “Software”
 – Hardware – physical equipment (i.e., the melter)
 – Software – Glass formulation
 • The facility performance can be enhanced through improved glass formulations that are essentially transparent to the engineered facility
 • Waste types/composition can be changed without physical changes

• The benefits of JHCM
 – One step processing (organics destroyed, metals oxidized, all integrated into highly stable glass matrix)
 – Very large waste volume reductions are possible (30 to 50% typical, >85% possible)
 – Reactive properties of the waste are removed
 – Exceptional stability of final waste package

• A note about the cost of vitrification
 – Cost is almost exclusively governed by waste properties and facility design requirements. Not the technology!
 • Level of confinement and shielding required
 • Facility safety related functions
 – For example, the Hanford Waste Treatment Plant (WTP) costs:
 • Facility = $15,000M
 • 4 melters = $60M (0.4%)
JHCM Development History

There are more than 4 decades of development and operating experience using JHCM vitrification for treating sludge/slurry waste in the U.S.
Tailoring the technology to the waste

- JHCM technology can be tailored to the waste through variations in the glass forming additives. Widely varying waste composition can be accommodated within an existing facility.
 - Higher waste treatment rate capability translates into cost savings through small plant size and/or reduced operating time
 - Increased waste loading (fraction of glass originating from waste) increases waste treatment rate and reduces volume for disposal
 - Increased glass production rate increases waste treatment rate
 - Both factors depend on waste composition and glass composition
 - Optimization of glass composition can have drastic effects on overall process economics
 - Such changes are easy to implement since they do not require hardware changes
 - Complicated by numerous components present in typical wastes
 - Problem in constrained optimization of multiple properties with respect to numerous composition variables
 - Typically requires large data sets and development of glass property-composition models

\[
\text{Waste Treatment Rate} = \text{Glass Production Rate} \times \text{Waste Loading in Glass}
\]
Tailoring: Glasses Characterized Example

Hanford WTP LAW Vitrification:

- 538 LAW glasses, designed, fabricated and characterized
- Combination of statistical and active design
- Multiple properties relating to product quality and processability
- Data set used to develop glass property-composition models for those properties
Tailoring: Glass Property Model Example
West Valley Demonstration Project (WVDP)

• Project: Privately owned commercial nuclear fuel reprocessing plant
 – Operate from 1965 – 1972 using PUREX/THOREX process
 – Abandon in 1980 and taken over by US government for cleanup

• Waste
 – Volume – 2500 m³ of HLW stored in UGSTs
 – Activity – 888,000 TBq
 – Hazardous content: Low levels of Hg
 – Chemical form – Sludge high in OH⁻, nitrate, nitrite, chromium, sulfates, halides, organics, etc.
WVDP: Process

• Waste Pretreatment
 – Sludge washed for partial sodium removal (increase waste loading)
 – Ion Exchange (Zeolite) to remove Cs, Pu from liquids.
 • Zeolite blended with sludge for vitrification
 • Effluent cemented for disposal
 – Acidic THOREX stream neutralized and blended into sludge
 – Resultant waste stream was a blend:
 • PUREX sludge
 • THOREX sludge
 • Spent Zeolite media
WVDP: Vitrification Process

- Vitrification Process
 - Waste concentration and glass former addition
 - Vitrification and glass discharge
 - Melter emissions treatment
 - Container sealing and decontamination
 - Remote operation and maintenance
WVDP: Vitrification Plant Layout
WVDP: Melter

- **Melter parameters:**
 - 2.2 m² glass surface area
 - ~ 0.9 t glass per day
 - Three air-cooled Inconel 690 electrodes
 - Three-phase power
 - Fused-cast refractory lining
 - Water cooled welded SS shell
 - Two glass discharge chambers
 - Sloped bottom
 - Passive thermal expansion control
WVDP: Status

- 6 years of vitrification operations:
 - 1996 - 2002
- Bulk of waste processed in first two years
- 275 canisters of glass produced (~545 t glass)
- Borosilicate glass waste form
 - Glass formulation developed at Catholic University, Vitreous State Laboratory
 - Glass oxide basis:
 - ~19% PUREX
 - ~5% THOREX
 - ~17% Spent zeolite ion exchange media
- All waste processed and vitrification facility decommissioned
- Facility D&D completed; Facility reused for site D&D
Savannah River

• What is the Savannah River site
 – U.S. Department of Energy nuclear weapons material production site
 – 310 square miles
 – Construction started in 1951

• What is on the site
 – Five large production reactors
 – Two reprocessing facilities
 • Processes used: PUREX and others
 • Tritium production facilities
 – 36 t of weapons grade plutonium produced
Savannah River Waste

- The radioactive waste
 - 136,260 m³ of highly radioactive waste
 - 10.4 million TBq of radioactivity
 - 150,000 t of chemical wastes
 - including nitrate, nitrite, mercury, cyanide, etc.
 - 24 “Single-Shell” Tanks
 - 2,839 to 4,921 m³ capacity
 - 11 have leaked (one to environment)
 - 27 “Double-Shell” Tanks
 - 4,921 m³ capacity

- All Tank waste to be treated
 - Waste is separated into HLW and LAW fractions
 - Sludge washing to remove sodium
 - Liquid
 - Adsorption/filtration for TRU removal
 - Solvent extraction for Cesium removal
 - HLW is being vitrified in the Defense Waste Processing Facility (DWPF)
 - LAW treated through cementation
 - Waste to be processed in a 40 year treatment campaign
Savannah River Process

Tank Farm Storage & Evaporation (14.8 EBq)

Waste Removal & Pretreatment

Extended Sludge Processing

Washed Sludge

Salt Processing

Cesium & Actinides

Low Level Filtrate

Tank Closure

Grout (44 PBq)

Saltstone

Canisters of Vitrified Glass (14.7 EBq)

GWSB (Awaiting Federal Repository)

Final Processing

Vitrification
DWPF: Vitrification Process

- Vitrification Process
 - Washed sludge received and concentrated (mercury removal)
 - Glass frit is added and resulting slurry fed to melter
 - Vitrification and glass discharge
 - Melter emissions treatment
 - Container sealing and decontamination
DWPF: Treatment Technology

- Melter Parameters:
 - Weight: 58 t
 - Exterior dimension (frame): 6.4m (L) x 3.4m (W) x 4.0m (H)
 - 2.6 m² molten glass surface area
 - 2600 L molten glass pool volume
 - Design production capacity 2 t/d (33-45 wt% waste loading)
 - Production rate recently enhanced through active glass pool mixing retrofit
 - Installed in remotely operated cell
DWPF: Status

• Status
 – Commissioned 1996 and in continuous operation for 19 years.
 – 20 years of operation remaining to complete waste treatment
 – 10,000 t HLW glass produced (3,965 canisters)
 – ~26,000 t of glass total to complete treatment (~8,600 canisters)
M-Area

• Title: Savannah River site Materials Area (M-Area) mixed waste treatment project

• Waste
 – 2,500 m³ of Low Level mixed waste (RCRA listed plating line waste)
 – Waste contained in 11 tanks
 – Composition: sludge containing diatomaceous earth and perlite
 – Alkaline waste, high in Na, Al, P, U, Ni, nitrate

• VSL-EnergySolutions team won competitive procurement, 1995 – 1999
 – R&D, flow-sheet, glass formulation, design, build, operate, deactivate
 – Fixed price
M-Area: Vitrification Process

• Glass formulation
 – Borosilicate glass formulations developed by Catholic University, Vitreous State Laboratory
 – High waste loadings (50-70%)
 – Chemical passivation to reduce refractory and electrode corrosion by high Na glass melts
 – Excellent product leach resistance

• Vitrification process:
 – Waste retrieved from tanks, combined with glass forming chemicals, and fed to melter
 – Vitrification and glass discharge
 • Glass formed into gems and collected in 270 L drums
 – Melter emissions treatment
M-Area: Melter

- Slurry-fed JHCM
 - Mixed LLW + raw chemicals
- 5.0 m² glass surface area
 - Capacity: 5 t glass per day
- Air bubbler array to increase throughput
- Three electrodes
- Two-phase power
- Two air-lift discharge chambers
- Active thermal expansion control
- K3 contact refractory, AZS backup, H plenum, E riser
- Glass containment via thermal profile
- Glass discharged through “Gem” machines (product was glass marbles)
M-Area: Operation

- 44 Feed batches; 102 m³ batch size
 - 489 t of glass product produced
- Very reliability plant operation
 - 80% total cumulative lifetime plant availability
- 2,800 270-liter drums were filled (70% volume reduction)
 - Glass sampled from 5 drums from every batch and subjected to TCLP
 - Every batch met requirements
M-Area: Status

- Status
 - Waste form delisted by U.S. EPA, allowing on-site disposal as LLRW
 - Facility D&D completed with area restored to brown field
 - Vitrification technology transferred to and implemented at WTP
Hanford

• **What is the Hanford site**
 – U.S. Department of Energy nuclear weapons material production site
 – 500 square miles
 – Construction started in 1944 (Pu for Nagasaki bomb)

• **What is on the site**
 – Nine large production reactors
 – Five reprocessing facilities
 • Processes used: Bismuth phosphate, Uranium recovery, REDOX, PUREX, Cs/Sr recovery, & others
 – 111 t of weapons grade plutonium produced
Hanford

- What happened to the waste
 - The short answer is that it is all still there stored in underground tanks
 - 213,000 m³ of highly radioactive waste
 - 6.5 million TBq of radioactivity
 - 1000 kg of Plutonium in waste
 - 218,000 t of chemical wastes
 - including nitrate, nitrite, chromium (-6), sulfates, halides, organics, etc.
 - 149 “Single-Shell” Tanks
 - 190 to 4,000 m³ capacity
 - 67 known or suspect leaking tanks
 - 4,000 m³ and 37,000 TBq leaked to the soil
 - 28 “Double-Shell” Tanks
 - 4,000 to 4,400 m³ capacity
 - 1 confirmed leaking into secondary containment

- All Tank Waste to be Vitrified
 - Waste to be separated into HLW and LAW fractions
 - HLW and LAW to be vitrified by separate facilities
 - Waste to be processed in a 30 Year treatment campaign
Hanford Waste Treatment Plant (WTP)

- Meet WAC
- Maximize Waste Loading
- Manage Sulfate
- Manage Halides
- Glass Product Stays at Hanford

LAW
Vitrification (90+% of waste mass)

Supernatant - NaNO₃

Pretreatment
- Ultrafiltration
- Ion Exchange (Cs)

Maximize Mass

SLUDGE

HLW
Vitrification (90+% of waste activity)

Sludge

- Meet WAC
- Maximize Waste Loading
- Maximize Melter DF’s
- Manage Noble Metals
- Glass Product to be transferred to Yucca Mountain or Alternative
WTP: Design Requirements

• WTP elected to vitrify waste utilizing JHCM
• WTP processing requirements were extremely challenging
 – HLW glass production rate – 6 t/d @ 0.4 t/m²/d rate
 – LAW glass production rate – 30 t/d @ 1.0 t/m²/d rate
• The state of technology at the time (1998) in US
 – HLW – 1 MT/day from DWPF and WVDP (2.5 m² of glass pool area)
 – LAW – 5 MT/day from SRS M-Area facility (5 m² of glass pool area)
• Key issues that needed to be solved:
 – Very large physical melter size scale up
 • HLW – 2.2 to 4 m²; LAW – 5 to 10 m²
 – Very large processing rate scale up
 • HLW – 1.0 to 6 MT/day; LAW – 5 to 30 MT/day
 – Troublesome waste components
 • HLW – Pt/Rh/Ru, PO₄, Bi, Cr, S; LAW – S, Cl, and much Na
 – Widely varying waste composition (BiPO₄, Redox, & Purex processes; Uranium and Thorium fuel source)
WTP: LAW Vitrification Process
WTP: LAW Facility Layout
WTP: Treatment Technology - LAW

- LAW Production = 30 t glass/day (achieved through active glass pool mixing technology)
 - Weight: 299 t
 - Exterior Dimensions: 9m (L) x 6.6m (W) x 4.8m (H)
 - 10 m² glass pool surface area
 - 7630 L molten glass pool volume
 - Design production: 2 melters at 15 t/d each (35-45% waste loading)
 - Installed in gallery (melter provides shielding)
WTP: LAW Status

• Status
 – Construction of the plant continues
 – Highly successful development program
 • Glass formulations have been developed by the VSL for all waste streams
 • Large increases in glass waste loadings have been achieved reducing the final waste volume for disposal
 – Hot operations scheduled for 2022
 • LAW facility to start first
 • Followed by pretreatment and HLW
 – Glass to be produced
 • LAW – 527,838 t (95,825 LAW containers) – Local shallow burial
 • HLW – 31,968 t (10,586 HLW canisters) – Geologic repository
Waste Treatment Plant (WTP)

- The numbers:
 - $15,000,000,000 and >20 years to design/build
 - 263,000 cubic yards of concrete (26,300 concrete trucks)
 - 930,000 feet of piping (170 miles)
 - 40,000 tons of structural steel, enough to build three Eiffel Towers
 - 5,000,000 feet of cable and wire (900 miles)
LAW Facility

- LAW Vitrification Facility
 - 89% design complete
 - 86% procurement complete
 - 67% construction complete
Conclusion

• Conclusions
 – JHCM has successfully treated sludge/slurry wastes at production scale
 – Substantial cost savings have been achieved through waste volume reduction
 – The treated waste forms are highly stable and have meet all disposal requirements

• Contact information:
 – Eric Smith: esmith@energysolutions.com
 – Brad Bowan: BBowan@EnergySolutions.com
 – Ian Pegg: ianp@vsl.cua.edu