

Remaining questions after FIRST-Nuclides

IGD-TP 6th Exchange Forum, November 3-4, 2015, London, UK

Bernhard Kienzler

INSTITUTE FOR NUCLEAR WASTE DISPOSAL (INE)

KIT – University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

CP FIRST-Nuclides

- Objective: Quantification the rapid release of radionuclides from high burn-up used fuel after canister failure.
 - Relation of FGR to IRF for ¹²⁹I, ⁷⁹Se, ¹³⁵Cs, for high burn-up / lin. power rate ranges, full set of sample sizes, typical groundwater, aerobic to reducing conditions, quantification (speciation) of ¹⁴C, Se
 - Modelling
 - > Training, Education, Dissemination
- **Partners**: 10
- Associated Groups: 13
- End-Users: 6
- Funding: total: 4.74 Mio. €, EC contribution: 2.49 Mio. €
- Duration: 01.01.2012 31.12.2014

Outcome of CP FIRST-Nuclides

- Results from 12 different types of high burn-up UO2 LWR SNF.
 - IRFs at ~45 different time steps
 - up to 3 sample preparations
 - up to 20 isotopes.
- Huge investments for setup and implement the experiments / analytical tools and instruments
- Clearance by the utilities to publish the spent fuel data.

Contradictions in FIRST-Nuclides outcome

- Contradiction of measured ⁷⁹Se release with speciation of Se in the UO₂ matrix.
- Resolving open questions for some nuclides, such as of ¹³⁵Cs showing a higher release in comparison to ¹³⁷Cs.

Keep the experimental set-up, samples and materials, technques and experienced staff.

Cs release

PWR SNF: Higher ¹³⁵Cs release fraction in comparison to ¹³⁷Cs (by a factor of 1.7). The reason cannot be explained.

Element speciation in used fuel: Se

STUDSVIK & PSI: X-ray spectroscopic investigations on the chemical state of 79 Se in high-burnup UO₂ spent fuel

Speciation of Se

PSI, Studsvik

<u>Result</u>:

- XANES measurements show either a
 - mixture Se(0) and Se(IV) or
 - pure Se(-II)

Combined crystallography and ab initio calculations indicate that Se (including ⁷⁹Se) is present in UO₂ SNF in a homogeneous chemical form:

dispersed Se(-II) replacing oxygen sites in the UO₂ lattice.

Curti E. et al. (2014) Selenium redox speciation and coordination in high-burnup UO₂ fuel: Consequences for the release of ⁷⁹Se in a deep underground repository. J. Nucl. Mat., DOI: 10.1016/j.jnucmat.2014.07.003.

- 7 -

IRF(Se_{tot}) release as function of time

5 elements LE-Ge Detector (Canberra)

U M4 fluorescence mapping @ INE beamline (ANKA)

U M4 edge high energy resolution XANES

SNF Results: XANES measurements

Measurements up to now: U L3, Pu L3, Am L3, Mo K, Tc K - Np L3 and Cm L3 not measurable!

Plutonium:

- Pu present as Pu(IV)
- pre-edge feature?

1.2 1.0 1.0 0.8 0.6 0.4 0.2 0.4 0.2 0.4 0.2 0.6 0.4 0.2 0.6 0.4 0.2 0.6 0.2 0.0 1.900 20000 20100 20200 20200 20200 20200E [eV]

Molybdenum:

Mo seems to be present in metallic Mo(0) state!

What's about MOX?

Modelling

Water saturation of a pellet and release function

Relation to "Reactor Codes" pending

Design for C-14 extraction and C-14 speciation

Summary and Conclusions

 ... research heavily relies on the state-of-the-art hot laboratories, and highly encourages ... to maintain hot laboratory capabilities and plan for future renewal.

Continuation

- Improved statistics for the IRF of additional fission products, especially under reducing conditions.
- One single leachant. Competitive reactions (e.g. Br⁻)?
- **FGR** during leaching tests.
- In depth investigations of low concentrated but very relevant isotopes FPs ⁷⁹Se and Pd, activation products ³⁶Cl and ¹⁴C.
- Clear correlations of the IRF with nuclear power plant operational parameters (power rates, temperatures, FGR).
- Improved basis for delineating the IRF from long-term radionuclide release.
- Data for additional types of samples including MOX fuel and doped fuels and dependence of IRF on the type and quantity of dopants)
- Modelling approaches closer related to reactor codes

KIT's contribution to a Spent Fuel project:

- MOX, PWR (1200 days), burn-up of 38 GWd/tHM Natural UO₂ enriched by 3.2% Pu
- Dissolution based radionuclide release from MOX
 - Reducing conditions
 - Sufficient experimental duration ightarrow IRF and matrix dissolution
- Analysis of gas phase (fission gas release)
- Analysis of the leachates
 - Fission products: ⁹⁰Sr, ⁹⁹Tc, ¹²⁹I, ¹³⁷Cs,
 - Activation product ¹⁴C
 - Actinides: ²³⁸U, ^{239/240}Pu, ²⁴¹Pu, ²⁴¹Am, ²³⁷Np, (Reprocessed U: ²³⁶U)
- ¹⁴C analytics/speciation
- Efforts towards Se and Cl analytics.

Thank you for your attention