

Novel treatments to improve radioactive waste disposal : the case of Andra

IGD-TP Exchange Forum n°6
4/11/2015

Andra's positioning ahead of disposal

Andra, French Agency in charge of radioactive waste long-term management

- Independent from radioactive waste producers
- Under the supervision of several Ministries

Strengthen the overall consistency of waste management, from waste production until their disposal

Public endowment received in 2010 within the « Investissements d'Avenir » program to work ahead of disposal

- 75 M€ budget (almost over now)
- Goal: optimize radioactive waste disposal through innovative R&D projects on waste treatment
 - Optimize waste disposal capacities by volume reduction
 - Optimize **disposal safety** by processing waste to make them as inert as possible under disposal conditions
 - Optimize waste take over and distribution between the different disposal facilities already existing or planned

R&D collaborations between Andra and waste producers on waste processing

- R&D projects led by waste producers
- Andra brings the vision of disposal requirements and constraints

The PIVIC project

The IL-LL alpha contaminated waste issue

IL-LL waste only contaminated with alpha emitters

- Waste mainly arising from Areva facilities: glove boxes used for Mox production (Melox facility) and spent fuel reprocessing plants
- ◆ Mixed waste made of c. 30 % organic matter / c. 70 % metal & glass
- ◆ Production planned until 2042, c. 3,400 m³ on the whole

Original conditioning option (compaction) not accepted (2010)

- Organic matter radiolysis and hydrolysis issues under disposal conditions
 - H2 release → overpressure, explosion issue
 - Corrosive species release → waste packages corrosion issue
 - Complexing species release → possible increase in some radionuclides mobility in disposal

An alternative conditioning option is being studied, with the following requirements

- Full destruction of organic matter
- Confinement of radionuclides
- No pre-treatment
- Compactness
- Batch processing system

The « PIVIC » process

Process developed as a combination of pre existing technological elements

- Plasma incineration
- Vitrification of resulting ashes
- Fusion of metallic pieces
- In can process

Production of a biphasic waste

- Metallic fraction below
- Glass fraction above including ashes and actinides

Strong volume reduction

The R&D program

DRD/CM/15-0126

2018

- Feasibility of waste conditioning material
- Feasibility of the process (fusion and incineration)
- Feasibility of gas treatment

Step 3. Integration and development

- Development of the full process scale 1
- Improvement of conditioning material
- Waste package description

Step 4 . Qualification

Final process, to be nuclearized

Current achievements

Fusion pilot already built, tests underway

- Determination of operational parameters
- Study of the fusion of metallic pieces, including Al
- Study of ashes and actinides incorporation into the glass fraction
- Study of the phosphating process to manage metal chlorides
- Study of reactor fouling and actinide accumulation

Characterization of the first cans produced

- Very good separation observed between the metallic and the glass layers
- Actinides simulants almost exclusively located in the glass fraction

Graphite waste treatment

French graphite waste: origin and long-term management

About 23,000 tons of LL-LL graphite waste

- ◆ 9 UNGG reactors (graphite moderated, fueled with natural uranium, CO₂ cooled)
- ◆ 3 main radionuclides of concern for interim storage and disposal: ³H, ¹⁴C, ³⁶Cl

Reference management solution in France: near surface disposal

Graphite decontamination by thermal treatment studies

- ◆ Good performance for ³H and ³⁶Cl, low decontamination rates in ¹⁴C
- Discharges issues, complex management of secondary waste
- Strong lowering of graphite waste radiological inventory make treatment less interesting at this stage

Graphite thermal treament: CO2 gasification

Basic principle: remove ¹⁴C in graphite bulk selectively from ¹²C

- CO₂ will mainly react with degraded areas (more active sites)
- Assumption: ¹⁴C is mainly located in the most degraded areas of graphite matrix

Graphite thermal treament: CO₂ gasification

CO₂ selectivity for degraded areas confirmed on i-graphite simulant (milled graphite) above 950°C

PhD of Justin Pageot

But moderated removal of ¹⁴C on i-graphite

◆ 26 % of ¹⁴C removal for c.6 % weight loss at 950 °C

Research perspectives

Bitumen waste management

About 20 000 m³ of bitumen waste in **France**

- ◆ c. 7,000 m³ LLW-LL + c. 13,000 m³ ILW-LL
- Sludge produced by effluents coprecipitation coming from spent fuel reprocessing
- ♦ Homogeneous waste, salts incl. BaSO₄, NaNO₃

Comprehensive R&D made on French bitumen characterization and behavior under disposal conditions (coll. Areva/CEA/EDF/Andra)

- Fire hazard control (self-heating, fire resistance)
- Better knowledge of bitumen variability composition
- Cracking hazard control (H₂ production, bitumen swelling)

Disposal is the reference solution for French bitumen waste management

Prospective R&D on bitumen treatment

Prospective R&D on bitumen treatment may be interesting to maintain alternative management solutions

- Bitumen long-term management options still open in some European countries
- Growing demand of civil society to dispose of non-reactive radioactive waste

Thermal treatment already studied at CEA but strong technological and scientific challenges remain

- Bitumen supply into the process
- ◆ Salts decomposition (BaSO₄) and redox reactions management
- Gas treatment

DRD/CM/15-0126

Fissile material management

Launch prospective developments on bitumen treatment?

◆ The 2016 Euratom call may be an opportunity