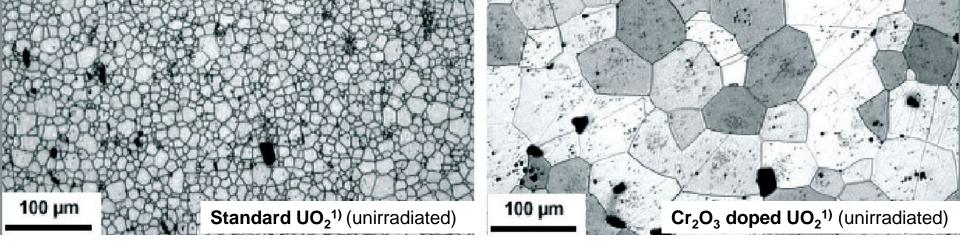
Joint Research Centre

the European Commission's in-house science service

Dissolution rate of MOX and Cr-doped UO₂ fuel

D. H. Wegen JRC-ITU

¥.


London, 3rd November 2015

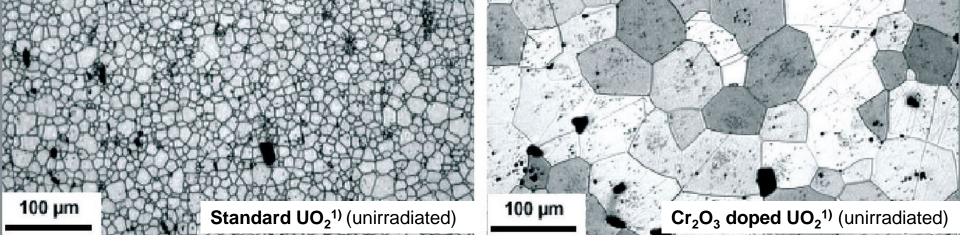
European Commission

×.

Standard UO₂ and Cr₂O₃-doped UO₂

Improving utilisation of nuclear fuel

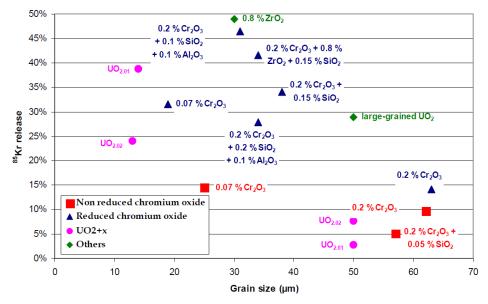
- flexible reactor operation
- increase of burn-up


Enhanced fuel performance

- PCI failure risk

- -> attenuation of mechanical stresses
 - increased creep rate
- higher internal gas pressure -> higher fission gas retention
 - enlarged grain size

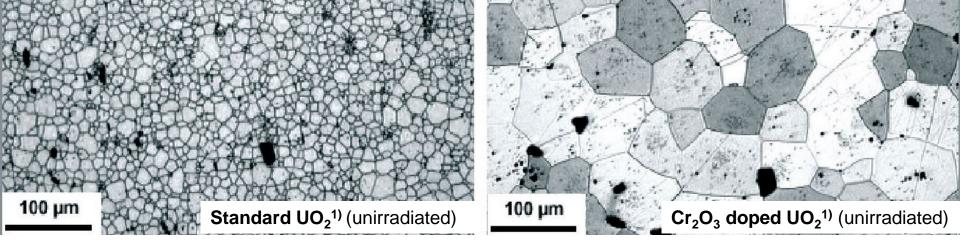
1) Y. Guérin, 2009: Advanced UO_2 and MOX ceramics, p. 47, in ed. J.-L. Guillet, Y. Guérin, *Nuclear fuels*, DEN Monographs, CEA and Groupe Moniteur, Paris, France


Cr₂O₃-doped UO₂

Fission gas retention

post-irradiation annealing test large grained UO₂ not sufficient

intragranular bubble formation structural defects due to


- hyperstoichiometry (U0_{2+x})
- second phase precipitates (0.2% Cr₂O₃ doped fuel)

 85 Kr release results after annealing tests of 5 hours at 1700° C on irradiated UO $_2$ fuel (10 GWd/t $_{\rm U})^{2)}$

2) S. Valin et al., 2003: Synthesis of the results obtained on the advanced UO_2 microstructures irradiated in the tanox device, in: Advanced fuel pellet materials and designs for water cooled reactors, IAEA. IAEA-TECDOC-1416, Vienna, Austria, 2004.

Leaching behaviour of irradiated Cr₂O₃-doped UO₂

Some data available for oxidising conditions e.g.¹⁻³⁾

Proposal to decrease the uncertainty related to the release of radionuclides from irradiated Cr₂O₃-doped UO₂ fuel

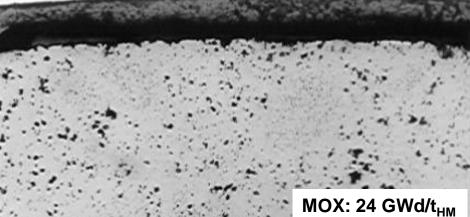
- reducing conditions (30 bar H₂)
- well characterized fuel (incl. irradiation history)
- determine the long-term dissolution rate
- comparison with un-doped UO₂ fuel tested under similar conditions


1) Roth, O., et al. (2013). Effects of matrix composition on instant release fractions from high burn-up nuclear fuel. MRS Proceedings 1518: 145-150.

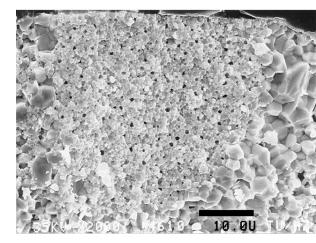
2) O. Roth, et al. (2014). Effects of matrix composition and sample preparation on instant release fractions from high burnup nuclear fuel. MRS Proceedings 1665: 261-266

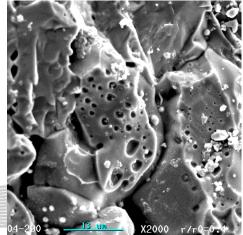
3) K. Nilsson (2014). Oxidative dissolution of doped UO_2 and H_2O_2 reactivity towards oxide surfaces - A kinetic and mechanistic study. KTH Royal Institute of Technology. Licentiate. . Stokholm, Sweden.

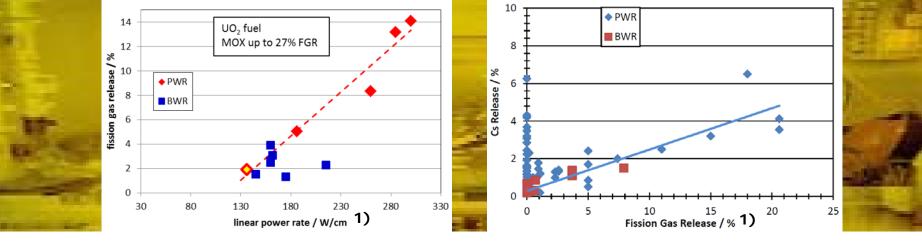



European Commission

Cr₂O₃-doped UO₂ fuel experiment


Fuel:	Cr ₂ O ₃ -doped UO ₂ fuel					
	burn-up approx. 60 GWd/t _{HM}					
	decladded pellet disc fragments					
	1 mm thick (surface area estimated)					
Leachant:	start volume 400 ml, 10 mM NaCl, 2mM HCO ₃ -					
	pH 8.2, E_h approx300 mV _{SHE} measured during sampling					
Gas phase:	30 bar H ₂ /0.03% CO ₂					
Duration:	1-1.5 years					
Conditions:	HBU-autoclave (lined with PEEK)					
Sampling:	20 min, day 1, 7, 70, 360, 420, 480, 540					
	matrix corrosion					





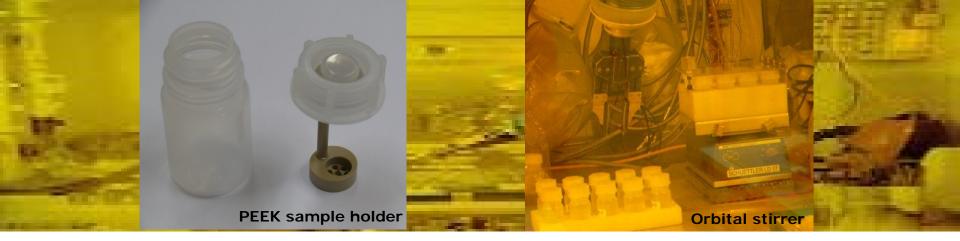
MOX compared to UO₂-fuel

- Higher linear power level
- Higher centreline temperature
- **Smaller grainsize**
- Heterogeneous fissile material distribution
- Plutonium rich agglomerates with high burn-up
- **Restructuring of mixed oxide**
 - further division of grains
 - gas bubbles at intergranular locations
 - metallic precipitates
- Higher fission gas release

MOX fuel leaching experiment

UO₂-fuel

- radionuclide inventory depend on burn-up
- fission gas (FG) release correlated to linear power rate
- FG release seems to correlate with release of volatile fission products (e.g. ¹³⁷Cs)
- release of volatile FP's correlated to linear power rate
- fission gas in the plenum average release from all fuel in a rod
- power history can be locally different in a fuel rod
 - -> locally different IRF possible



MOX fuel leaching experiment

Proposal to decrease the uncertainty related to the release of radionuclides from irradiated MOX fuel

- samples from MOX fuel at well-defined locations
- well characterized commercial fuel (incl. irradiation history, FGR)
- determination of IRF
- determine the matrix dissolution rate

MOX fuel static corrosion experiment

Fuel:	commercial MOX fuel burn-up 40 - 60 GWd/t _{HM}					
Leachant:	2-4 mm cladded segment (50 \pm 1) ml , 1mM NaHCO ₃ + 19mM NaCl pH : 8.4 \pm 0.1, T : (25 \pm 5) ° C					
Gas phase:	air, oxidising condition					
Duration:	120-300 days (cumulated time)					
Conditions:	PE-bottles with PEEK sample holder					
Sampling:	complete replenishments					
	IRF, matrix corrosion					

Analysis of leaching solutions

Radionuclides:

⁷⁹Se, ⁹⁰Zr, ⁹⁰Sr, ⁹⁹Tc, ¹⁰⁰Mo, ¹⁰⁵Pd, ¹⁰⁶Ru/¹⁰⁶Rh, ^{110m}Ag, ¹²⁵Sb, ¹²⁷I, ¹²⁹I, ¹³³Cs, ¹³⁴Cs, ¹³⁷Cs, ¹³⁹La, ¹⁴⁰Ce, ¹⁴¹Pr, ¹⁴³Nd, ¹⁵⁴Eu, ¹⁵⁵Eu, ²³⁷Np, ²³⁸U, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu/²⁴¹Am

Stable elements:

Ti, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Zr, Mo, Ag, Pd, Sn, Ba, Nd

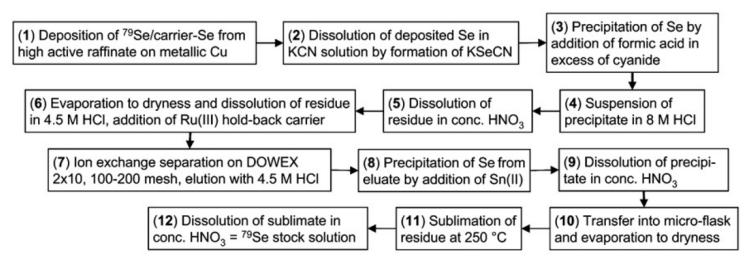
Technique:

ICP-MS, Liquid Scintillation Counting, *γ*-spectrometry

Separation and purification of ⁷⁹Se

Selective deposition of Se out of high active PUREX raffinate by reductive cementation on Cu (Reinsch test)¹⁾

Results:


- ICP-MS + EDX confirmed: Se (+ Pd) deposited
- ICP-OES: >85% of Se-carrier was recovered
- γ-spectrometry: Cs decontamination factor ~50000

Separation and purification of ⁷⁹Se

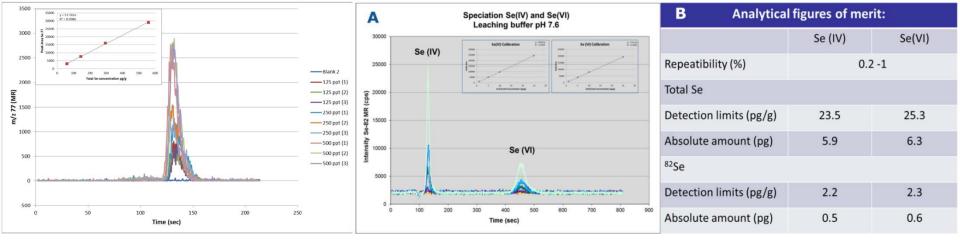
Further purification possible¹⁾

1) G. Jörg et al., Preparation of radiochemically pure ⁷⁹Se and highly precise determination of its half-life, Applied Radiation and Isotopes 68(2010)2339–2351

	ICP-MS NexION 300			Interference	Mode	Gas/Reaction	
1.2			⁷⁹ Se	⁷⁹ Br+ ; ¹⁵⁸ Gd ²⁺ , ⁴⁰ Ar ³⁹ K+; ³⁸ Ar ⁴⁰ ArH+; ⁶³ Cu ¹⁶ O+			
			⁷⁷ Se	$^{39}K^{38}Ar^{+}$ $^{61}Ni^{16}O^{+},$ $^{59}Co^{18}O^{+}$ $^{76}GeH^{+},$ $^{76}SeH^{+}$ $^{40}Ar37Cl^{+},$ $^{40}Ca^{37}Cl^{+}$ $^{154}Sm^{+}+,$ $^{154}Gd^{++}$			
15.			⁷⁸ Se	⁷⁸ Kr+; ⁴⁰ Ca ³⁸ Ar+; ⁶² Ni ¹⁶ O+; ⁴¹ K ³⁷ Cl+; ¹⁵⁶ Gd++, ¹⁵⁶ Dy++; ³⁸ Ar ⁴⁰ Ar+; ³⁹ K ³⁹ K+	REACTION	O _{2;} O ₂ /He; O ₂ /Ar; O ₂ /N ₂	P _A
			⁸⁰ Se	${}^{80}\text{Kr+;} \ {}^{40}\text{Ca}{}^{40}\text{Ar+;} \ {}^{64}\text{Ni}{}^{16}\text{O} + \ {}^{64}\text{Zn}{}^{16}\text{O} + ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; $			8
		5	⁸² Se	⁸² Kr+; ⁴² Ca ⁴⁰ Ar+ ; ⁶⁶ Zn ¹⁶ O+; ³² S ³⁴ S ¹⁶ O+; ³⁴ S ¹⁶ O ₃ + ; ⁸¹ BrH+; ⁴⁵ Sc ³⁷ Cl+ ; ¹⁶² Dy++; ¹⁶² Er++			

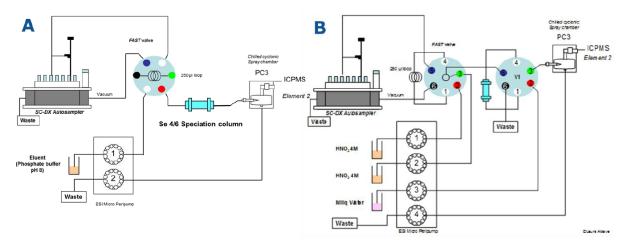
⁷⁹Se Quantification and Standardisation

ICP-MS NexIOn: Collision/Reaction Cell Technology


- Minimise the effect of many
- potential spectral interferences

I sotope dilution mass spectrometry

- ⁷⁸Se & ⁸²Se enriched certified standards
- Double IDMS


Flow Analysis-Automated Platforms for Radionuclide Analysis¹⁾

Determination of ⁷⁹Se

Flow Analysis-Automated Platforms for Radionuclide Analysis¹⁾

System configurations for speciation analysis (A) and for pre-concentration and/or separation (B) purposes

1) Aldave de las Heras et al., *Development of methods for the determination of B emitters* (⁷⁹Se, ¹²⁶Sn, ¹³⁵Cs, ⁹⁰Sr) based on sequential injection flow analysis coupled to ICP-MS. In ed. B. Kienzler et al., *Final 3rd Annual Workshop Proceedings.* FIRST-Nuclides Deliverable (D-N° :5.4), pp. 95-103, 2014.

European Commission

Stay in touch

JRC Science Hub: www.ec.europa.eu/jrc

in

You Tube Twitter: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

YouTube: JRC Audiovisuals

Vimeo: Science@EC

JRC Role Facts & Figures

- In-house science service of the European Commission
- Independent, evidence-based scientific and technical support for many EU policies
- Established 1957
- 7 institutes in 6 locations
- Around 3000 staff, including PhDs and visiting scientists
- 1370 publications in 2014

