IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

SEALEX In-Situ Experiments-Performance Tests Of Repository Seals: Experimental observations and modelling

Nadia Mokni , J.D. Barnichon

Improvised by A. Dauzères

IGD-TP 6th 3-4 November 2015

1-SEALEX experimental program

- New drift excavated in 2008 in Tournemire URL
- 6 SEALEX in-situ tests are installed from this drift
- Test the long-term hydraulic performance of sealing systems (in normal conditions), for different core compositions (pure bentonite, sand/bentonite mixtures) and conditionings (pre-compacted blocks or in situ compacted powder)
- Quantify the impact of intra core geometry —construction joints in the case of pre-compacted blocks on the hydraulic properties of sealing systems
- Quantify the effect of altered conditions (loss of mechanical confinement)

SEALEX program: Parametric approach

•	Reference Tests	Performance Tests	Intra-core geometry Core conditioning Composition (Bentonite/sand)	Core view	Altered conditions	Emplacement date	
Base case	RT-1	PT-N1	Monolithic disks Precompacted (70/30)		No		12/2010 06/2011
	-	PT N2	Disks + internal joints (4/4) Precompacted (70/30)		No		12/2011
Variations / Base case	-	PT A1	Monolithic disks Precompacted (70/30)		Confinement loss		06/2012
	-	PT-N3	Pellets/powder In situ compacted (100/0)		No		01/2013
	-	PT-N4	Pellets/powder In situ compacted (100/0)		Confinement loss		09/2013

IRSI

2. Description of SEALEX in-situ tests

Bentonite-based core fully instrumented with 21 wireless sensors: 5 σ , 8 P_p, 8 RH

3. Experimental and modelling results 3-D Model

Base case: performance test, PT-N1

- Bentonite/sand mixture (70/30 dry mass)
- 8 monolithic pre-compacted discs
- Initial water content ~11%
- Initial dry density of 1.97 Mg/m3
- Non uniform technological void

-A45

—A11

-R22

R60

1000 days

- 3000 days

A45

A11 R

1.2

Non-uniform

Rock

thickness Technological gap

Hock Dentoni gap concrete

- Important role of the technological gap, on the saturation and swelling pressure kinetics.
- Different evolutions of radial swelling pressures suggests a heterogeneous structural distribution of bentonite/sand mixture within the blocks (confirmed by μ-CT observations).
- Heterogeneous distribution of dry density is observed.
- The non uniform thickness technological gaps increases this heterogeneous distribution of dry density.
- Remaining dry density gradient after ~10 years of hydration.
- The effect of this dry density gradient should be considered in the evaluation of long term performance of engineered barriers, which focus essentially on the required average dry density.

Thanks for your attention

