

Implementing Geological Disposal of Radioactive Waste Technology Platform

Modelling Conceptual model / process understanding

Bentonite homogenization: processes and modelling

Antonio Gens

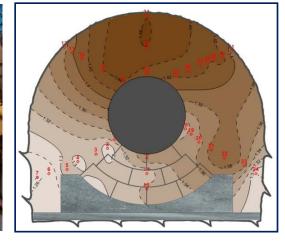
Technical University of Catalonia (UPC), Barcelona Tech

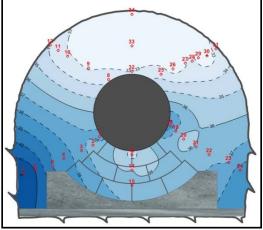
TGW2 – Bentonite homogenization

IGD-TP 6th Exchange Forum, November 3-4 2015 London, UKT

Introduction

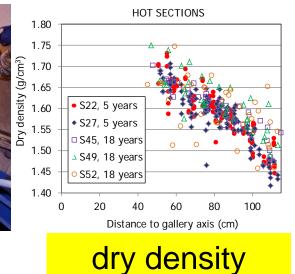
- There are a number of sources of heterogeneity in bentonite barriers, backfills, seals and plugs
 - Emplacement (unsaturated bentonite)
 - Combination of pellets and blocks in the same section
 - Geometrical features of the opening
 - Presence of technological gaps and voids
 - Non homogeneity of emplacement, segregation (granular bentonite)
 - O Transient period
 - Volume change/strain irreversibility
 - During operation (bentonite probably saturated)
 - Self sealing after erosion, piping, dissolution and /or colloid formation
- The degree and distribution of heterogeneities will vary during the transient phase involving only hydration (backfills, seals and plugs) or hydration and heating (buffers)
 - It is necessary to predict the evolution and final state of the heterogeneities
 - The degree of homogenization achieved may be strongly affected by thermal effects
 - Potentially, heterogeneity may evolve beyond the end of the transient phase

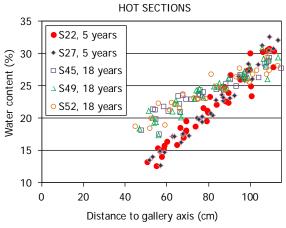



Tracking the evolution and final state of heterogeneity

- Average dry density is not sufficient to characterize the state of the barrier or a seal
 - The maximum hydraulic conductivity will be controlled by the connected zone of lowest dry density
 - Potential for preferential paths
 - Gas migration is often a local phenomena controlled by the weakest, more permeable zones
 - Heterogeneity of the saturated barrier will dominate the pattern of gas migration
 - Effect on microbial activity
- Although the bentonite exhibits a natural tendency towards homogenization, observations during dismantling of very long term tests have revealed that, even at or close to saturation, a degree of heterogeneity persists
 - O EB test in Mont Terri. Isothermal, artificial hydration. 10.5 years
 - Febex Test in Grimsel. Non-isothermal, natural hydration. 18 years

Long term tests

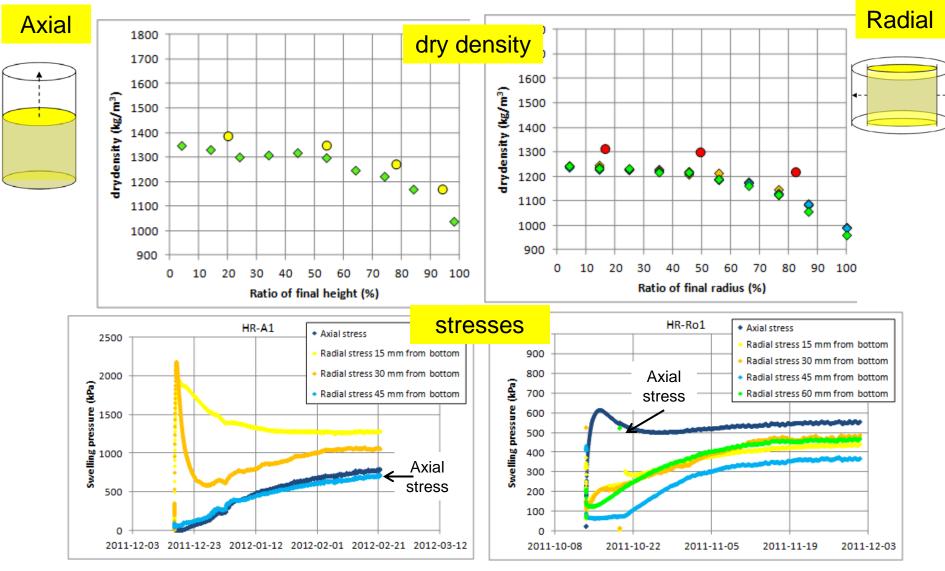




Febex (18 years)

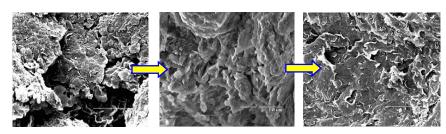
EB

water content

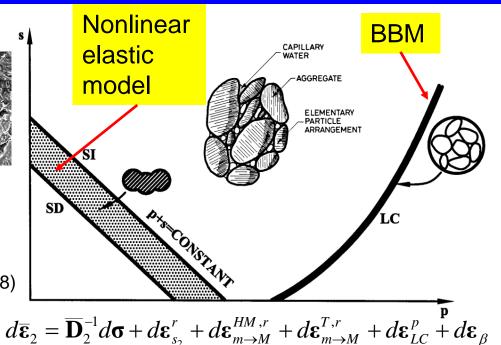

Objectives

- Process understanding requires research on:
 - O Effects of initial fabric and its evolution
 - O Role of thermal effects
 - O Potential role of geochemistry
 - Very long term behaviour (creep)
 - Well-controlled laboratory tests over a range of conditions and scales are required
- Modelling
 - To develop predictive capabilities
 - Constitutive modelling of the bentonite (including large displacements)
 - Incorporation into coupled HM and THM formulations and codes
 - Ancillary (but important) developments: e.g. gap model
 - Application to laboratory and field cases (enhanced database with the dismantling of long term tests)
 - > Application to case studies for the verification of performance

Mechanical behaviour of the bentonite


- Irreversibility (and stress path dependency) is a core feature of behaviour underlying final heterogeneity
 - Irreversibility is a well known feature of the behaviour of expansive clays (e.g. swelling pressure is path dependent)
 - Irreversibility has been unambiguously observed in saturated bentonite
 - Irreversibility should be carefully characterized by means of welldesigned and well-controlled tests on saturated and unsaturated bentonite
 - Irreversibility (and stress path dependency) should be reproduced by suitable constitutive models
 - Elasto-plasticity seems to be a natural choice
 - However, simple models like the Barcelona Basic Model (and others) will face difficulties in this respect
 - A number of alternatives are available within the elasto-plastic framework
 - > We have selected a double-structure (double porosity model)

Clay Technology tests (isothermal saturated MX-80)



Irreversibility observed under "ideal" conditions: Saturated, isothermal and under uniform stresses: it is intrinsic to the material!

Double structure constitutive model for bentonite

- Gens & Alonso (CGJ, 1992).
- Alonso, Vaunat & Gens (EG, 1999).
- Sánchez, Gens, Guimaraes & Olivella (IJNAMG, 2005).
- Sánchez, Gens, Guimaraes & Olivella (C&G, 2008)
- Gens, Gesto, Vaunat, Ruiz (2015, submitted).

- Double structure (porosity) material: especially well suited for pellet-based materials
- O Evolution of microfabric is tracked in blocks and pellets
- O Permeability dependent on the larger size pores rather than total porosity
- O Geochemical effects can be attributed to the microstructure
- O Irreversibility and stress path dependency are a natural consequence of the model!

Summary

- The objective of the modelling with respect to bentonite homogenisation would be
 - Achieve and demonstrate process understanding
 - Attain and demonstrate predictive capabilities
- Focus would be on the mechanical constitutive model that should exhibit irreversibility and stress path dependency and encompass:
 - Saturated and unsaturated material
 - Isothermal and non-isothermal conditions
 - O Blocks and pellet-based materials
- The mechanical constitutive model incorporated in coupled HM and THM formulations would be applied to:
 - Well-controlled laboratory tests at different scales (process understanding)
 - Past and ongoing large scale field tests: EB, Febex, SEALEX, CRT...
 - Case studies for the verification of the performance of current designs for buffers, backfills, seals and plugs

Long term homogeneity/heterogeneity may depend on creep behaviour

Laboratory tests (limited duration); fundamental micro or nanoscale studies may be required