Leachability of THOR Residues

IGD-TP Exchange Forum
04 November 2015
Outline

- THOR – Thermal Organic Reduction
- Technology overview
- Wastes treated
- Solid product characteristics
- Leach resistance
- Optional monolith waste form
- Summary
THOR - Thermal Organic Reduction

- Fluidized Bed Steam Reforming process
- Decomposition of Organic Compounds into carbon dioxide (CO_2) and Steam (H_2O)
- Reduction of Nitrates into Steam (H_2O), nitrogen gas (N_2), and (CO_2)
- Non-Incineration
- No dangerous Off-Gases
- No liquid effluents
- Captures 99.99% of radioactivity into the final, solid product
- Customizable final product characteristics
- Low maintenance
- Volume Reduction
- 14+ Years of Continuous, Full-Scale Operations in Erwin, TN
THOR Technology

- Thermal process
 - Fluidized bed of granular solids
 - Fluidized with steam
 - Operates at 650-850°C
- Waste preparation and inputs
 - Mineralizing additive
 - Waste feed injected into fluidized bed
 - Coal
- Inside the Fluidized Bed Steam Reformer
 - Water evaporates
 - Nitrates reduced to nitrogen gas
 - Inorganic waste constituents converted into insoluble minerals
THOR – Treated Wastes

- **Nitrate Wastes**
 - Main Chemical Component: Sodium Nitrate and other Nitrates and Nitrites
 - Other Chemical Components: Organics, Sulfates, Chlorides, Calcium

- **Ion Exchange Resins (IER)**
 - Main Chemical Components: Long-chain Organics
 - Other Chemical Components: Boron, Sulfur, Iron, Sodium, and Lithium
 - Commercial Treatment of IERs for over 14 years in Erwin, TN

- **Dry Active Waste (DAW)**
 - Main Waste: Filters
 - Other Waste: Clothing, Plastics, Rubber, etc.
 - Commercial Treatment of DAW for over 14 years in Erwin, TN

- **Various Wastes Liquids and Sludges**
 - Main Wastes: Oils, Sludges, etc.
 - Other Wastes: Heavy Metal (Uranium and Magnesium) bearing wastes
Solid Waste Products

- Small sized particles of ceramic mineral
- Alkali-Alumino-Silicate (feldspathoid) minerals (NAS)
 - Nepheline (Na₂O-Al₂O₃-2SiO₂)
 - Nosean (6 Nepheline + Na₂SO₄)
 - Sodalite (6 Nepheline + 2NaCl)
 - Leucite (K₂O-Al₂O₃-4SiO₂)

![Scanning Electron Microscope Image of Sodalite mineral](image1)

THOR Product Solids

![Typical Feldspathoid Structure](image2)
Solid Waste Products

- Process operating temperature is sufficiently low to not vaporize radionuclides

- Ceramic waste form contains cavities/sites that incorporate:
 - Radionuclides (Tc, Cs, most I)
 - Alkali Metals
 - Sulphur
 - Chlorides
 - Fluorides

- Spinel minerals form that contain various metals
 - Cr, Ni, Fe, Pb, etc.
Leach Resistance Performance of THOR Product

- Leach resistance performance is better than vitrified glass
- >99.99% retention of Cs, Tc and other radionuclides
- Can accommodate Cl, F, SO\(_4\), Mo, Re, Tc, etc.

Leach resistance of Tc-99 compared to other waste forms – analysis performed by Pacific Northwest National Lab
Optional Monolith Final Waste Form

• Granular mineral products are mixed with geopolymer binder to make monolithic final waste form
 • Geopolymers are amorphous to semi-crystalline, three-dimensional silico-aluminate minerals; mineral polymers resulting from mixing clay with sodium silicate and/or NaOH
 • Density of 1.78g/cc
 • Compressive strength of 159 bar at 33 days cure time
Summary – THOR Steam Reforming

Accommodates widely varying inputs
- Treats solids, liquids, or sludges with high or low pH
- High organic destruction
- Does not volatize Cs, Tc (and others)
- Mineralizes Cl, F, P, and SO$_4$, and radionuclides in leach resistant solid

Non-Incineration
- Operates below flammability limits
- Modular design can be provided

Leach resistant wasteform from processing
- Qualifications to date validate highly leach resistant
- Leach tests done on real waste and simulant
- Granular and monolith waste forms

THOR is Proven
- 14+ year history of commercial operations treating ion-exchange resins
Supplemental Slides/Data
THOR Product: 7-Day PCT Results for Granular Product made from simulant and actual Radioactive Waste

***PCT requirement for treated LAW waste: <2.0 g/m²

<table>
<thead>
<tr>
<th>Normalized Elemental Release</th>
<th>ESTD P-1B Granular</th>
<th>BSR Module B Simulant Granular</th>
<th>BSR Module B Radioactive Granular</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g/m²)</td>
<td>Std. Dev.</td>
<td>(g/m²)</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Al</td>
<td>2.12E-03</td>
<td>2.01E-06</td>
<td>2.34E-03</td>
</tr>
<tr>
<td>S</td>
<td>3.42E-01</td>
<td>2.17E-03</td>
<td>4.34E-02</td>
</tr>
<tr>
<td>133Cs</td>
<td>9.31E-03</td>
<td>8.78E-05</td>
<td>1.09E-02</td>
</tr>
<tr>
<td>137Cs</td>
<td>4.10E-03</td>
<td>4.07E-04</td>
<td>8.83E-03</td>
</tr>
<tr>
<td>Re</td>
<td>2.15E-02</td>
<td>2.40E-04</td>
<td>1.14E-02</td>
</tr>
<tr>
<td>99Tc</td>
<td>7.82E-04</td>
<td>2.50E-05</td>
<td>9.86E-04</td>
</tr>
<tr>
<td>127I</td>
<td>1.51E-02</td>
<td>4.13E-04</td>
<td>9.82E-04</td>
</tr>
<tr>
<td>129I</td>
<td></td>
<td></td>
<td><3.61E-03</td>
</tr>
<tr>
<td>pH</td>
<td>11.63 (Blend)</td>
<td>11.4</td>
<td>11.25</td>
</tr>
</tbody>
</table>
THOR Product: 7-Day PCT Results for Monoliths and Granules of Simulant FBSR Mineral Products

***PCT requirement for treated LAW waste: <2.0 g/m²

<table>
<thead>
<tr>
<th>Normalized Elemental Release (g/m²)</th>
<th>Non-Radioactive</th>
<th>Radioactive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fly Ash ESTD P-1B* GEO-7 Monolith (68% FBSR loading)</td>
<td>Fly Ash BSR Mod B GEO-7 Monolith (68% FBSR loading)</td>
</tr>
<tr>
<td>Al</td>
<td>4.30E-05</td>
<td>4.47E-04</td>
</tr>
<tr>
<td>S</td>
<td>4.78E-02</td>
<td>1.02E-01</td>
</tr>
<tr>
<td>Cs-133</td>
<td>2.01E-03</td>
<td>4.60E-03</td>
</tr>
<tr>
<td>Cs-137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>1.05E-02</td>
<td>1.99E-02</td>
</tr>
<tr>
<td>Tc-99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>2.15E-02</td>
<td>7.30E-02</td>
</tr>
<tr>
<td>Si</td>
<td>2.70E-03</td>
<td>7.02E-03</td>
</tr>
<tr>
<td>I-127</td>
<td>5.27E-03</td>
<td>3.61E-03</td>
</tr>
<tr>
<td>I-129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>12.39</td>
<td>12.56</td>
</tr>
</tbody>
</table>