

Sensitivity Analysis of Probabilistic Dose Results in SKB's License Application

Allan Hedin SKB

Background

- On March 16, 2011 SKB applied for licences
 - to construct and operate an encapsulation plant for spent nuclear fuel in the municipality of Oskarshamn
 - to construct and operate a KBS-3 repository for final disposal of spent nuclear fuel at the Forsmark site in the municipality of Östhammar
- The safety assessment SR-Site is a key component in the safety case for the final repository
- The safety case is currently under review by the Swedish Radiation Safety Authority, SSM
- This presentation concerns sensitivity analyses of probabilistic dose results in SR-Site
 - Some results are included in the assessment, some were obtained later

The KBS-3 concept

Primary safety function: Complete containment

Secondary safety function: Retardation

Dose results

- All 6,000 canisters are expected to be tight at deposition.
- Two failure modes of the canister could not be ruled out in the safety assessment and hence contribute to risk
 - Canister failure due to earthquake induced secondary shear movements in rock fractures intersecting a canister position
 - Canister failure due to enhanced corrosion following loss of the protecting clay buffer as a result of buffer erosion
- The latter dominates, and is addressed in the following

Probabilistically calculated doses; erosion/corrosion scenario

- A number of probabilistic cases to explore impact of uncertainties related to erosion, corrosion, transport
 - Mean dose as a function of time shown for each case in figure
 - No failure is also possible!
- All cases dominated by Ra-226@ 1MYr
- Case with highest consequences used to demonstrate compliance

Sensitivity analysis methods, overview

- Of interest to determine
 - A. input parameters that correlate most strongly with dose over entire dose range; Global sensitivity analysis; methods:
 - 1. standardized rank regression coefficients (SRRC) not further discussed
 - 2. variance based sensitivity indices
 - B. input parameter values that are related to high and low doses; methods:
 - 1. conditional mean values not further discussed
 - 2. cobweb plots
- Will also show tailored regression model
 - demonstrates how the variability in the output can be explained with analytic expressions derived from the conceptual understanding of the transport processes

A. Global sensitivity analysis2) Variance based method (Sobol' indices)

- Variance of output decomposed into terms attributable to single inputs and to combinations of inputs
- Yields good understanding of sensitivites but computationally costly
 - Dose calculations in SR-Site done with comparatively fast numerical models; ~one minute per realization.
 - Also: key results can be reproduced with simple analytical expressions; ~1/10 second per realization
 - Further, considerable reduction if only peak dose of dominating nuclide calculated
 - Thus good potential for these simplified models to be efficiently used in the determination of variance based sensitivity indices.
- The number of realizations required for variance based sensitivity analysis reduced by sampling scheme utilizing quasi random numbers (QMC sampling)
 - Much more efficient than random numbers (MC) or Latin Hypercube Sampling (LHS).

Computing Sobol indices for SR-Site dose results

Used simplified analytical expressions to calculate peak dose over time

$$Dose^{Ra226} = D_{Fuel}(t_{Max} - t_{Failure}) \exp \left\{ \frac{Pe}{2} \left[1 - \sqrt{1 + \frac{4t_{w}\lambda^{Ra226}}{Pe}} \left(1 + \frac{F\sqrt{(\varepsilon_{P} + (1 - \varepsilon_{P})K_{d}^{Ra}\rho)D_{e}}}{t_{w}\sqrt{\lambda^{Ra226}}} \right) \right] \right\}$$

- Sampled five uncertain input variables...
 - $-K_d$ for Ra (sorption coefficient in rock matrix)
 - $-D_e$ for cations (effective diffusivity in rock matrix)
 - $-D_{Fuel}$ (dissolution rate of the spent fuel)
 - F (flow related transport resistance parameter in rock)
 - $-t_{Failure}$ (time of canister failure)
- …according to Quasi Monte Carlo scheme, QMC
 - Software for QMC scheme from <u>www.broda.co.uk</u>

Computing Sobol indices...

- 5 input variables means 2⁵-1 = 31 first and higher order Sobol' indices to be calculated
- One million model realisations for each of the 2⁵-1 indices,
 - i.e. in total about 30 million realisations.
 - Required only a couple of minutes of calculation time due to extremely fast model

Sobol sensitivity indices for the Ra-226 dose at 10⁶ years. Uncertain input parameters:

 $1 = K_d$ for Ra, $2 = D_e$ for cations, $3 = D_{Fuel}$, 4 = F, $5 = t_{Failure}$

1 st order	
S_1	0.0188
\mathbf{S}_2	0.0087
S_3	0.1266
S_4	0.2971
S_5	0.0399

2 nd order	
S ₁₂	0.0005
S ₁₃	0.0155
S ₂₃	0.0072
S ₁₄	0.0152
S ₂₄	0.0068
S ₃₄	0.2453
S ₁₅	0.0049
S ₂₅	0.0023
S ₃₅	0.0330
S ₄₅	0.0774

3 rd order	
S ₁₂₃	0.0004
S ₁₂₄	0.0008
S ₁₃₄	0.0126
S ₂₃₄	0.0056
S ₁₂₅	0.0001
S ₁₃₅	0.0040
S ₂₃₅	0.0019
S ₁₄₅	0.0040
S ₂₄₅	0.0018
S ₃₄₅	0.0639

4 th order	
S ₁₂₃₄	0.0007
S ₁₂₃₅	0.0001
S ₁₂₄₅	0.0002
S ₁₃₄₅	0.0033
S ₂₃₄₅	0.0015

5 th order	
S ₁₂₃₄₅	0.0002

Total order		
T_1	0.0812	
T_2	0.0387	
T_3	0.5216	
T_4	0.7361	
T_5	0.2383	

Comments on results

- Example to demonstrate feasibility
- Sobol indices did not really yield new information about uncertainties in this particular case
- Unrealistic to calculate full set of Sobol indices in most cases
- Has been demonstrated that first order indices, together with so called total order indices sometimes yield useful sensitivity results at a reasonable computational cost
 - Still, computational costs to determine Sobol indices are prohibitive in many cases

B. Variables correlated with extreme doses2) Cobweb plots

- Straightforward method to visualize relationships between input and output data for probabilistic modeling results
- Freeware available at http://risk2.ewi.tudelft.nl/oursoftware/3-unicorn

Cobweb plot

Tailored regression model

 Simple analytical expressions suggests that the Ra-226 dose varies according to

$$log(Dose_{Ra226}) = Constant + log(D_{Fuel} \cdot t) - cF^{0.5} \cdot (K_dD_e)^{0.25}$$

- Therefore, regress log(DoseRa226) on the transformed variables
 - D_{Fuel}·t
 - $-D_{Fuel}$ t and $F^{0.5}$
 - $-D_{Fuel}t$ and $F^{0.5}K_{d}^{0.25}$
 - $-D_{Fuel}t$ and $F^{0.5}(K_dD_e)^{0.25}$

Sensitivity analyses SR-Site

Sensitivity analyses SR-Site

Sensitivity analyses SR-Site

Summary (1/2)

- Several methods for sensitivity analysis yield similar results regarding
 - A. input parameters that correlate most strongly with dose over entire dose range; Global sensitivity analysis; methods:
 - 1. standardized rank regression coefficients (SRRC)
 - 2. variance based sensitivity indices (Sobol' indices)
 - B. input parameter values that are related to high and low doses; methods:
 - 1. conditional mean values
 - 2. cobweb plots
- Tailored regression model demonstrates how output variability is explained with analytic expressions derived from the conceptual understanding of the transport processes
- Mathematical understanding and simplification of transport processes necessary for some of these methods (Sobol' indices, tailored regression model)

Summary (2/2)

- Important uncertain parameters are
 - The fuel degradation rate
 - The rock transport resistance
 - The time of canister failure
- Important uncertain factors not included in this analysis
 - The conceptual understanding of buffer erosion
 - The sulfide concentration in the groundwater
 - Biosphere dose conversion factors

Thank you for your attention!

- Kastriot Spahiu & Lena Zetterström Evins, fuel
- Christina Lilja, canister
- · Patrik Sellin, buffer, backfill and sealing
- Ignasi Puigdomenech & Birgitta Kalinowski, geochemistry
- Raymond Munier, geology
- Jan-Olof Selroos, ground water flow and transport
- · Tobias Lindborg & Ulrik Kautsky, biosphere
- Jens-Ove Näslund, climate

- Fredrik Vahlund, input data, QA modeling
- Martin Löfgren (Niressa AB), input data
- Christina Greis & Maria Lindgren, radionuclide transport
- Kristina Skagius, assistant project manager, FEP data base, intrusion, QA
- Ann-Mari Nisula, administration, QA
- Johan Andersson, co-ordination EBS initial state, rock mechanics issues, BAT issues, design feedback, etc
- Allan Hedin, project manager, methodology, etc

Extra

A. Global sensitivity analysis

1) Standardized rank regression, SRRC

- Data in each input and output distribution is replaced by its rank order within that distribution. Hereby, non-linear features of the distributions are "linearized".
- Regress ranked output data on ranked input data, SRRC = regression coefficients
- SRRC measures monotonic change in output vs. monotonic change in input
- Standard method frequently used in similar contexts

SRRC results for total and Ra-226 dose at 10⁶ years

B. Variables correlated with extreme doses1) Conditional mean values

- Consider top 1% of dose results. For each input variable:
 - Determine mean of input data for top 1%
 - Divide by mean of entire input data distribution
 - Ratio, called α_{99} , informs about correlations of high or low values of input parameter to high dose results
- Similarly, consider bottom 1% of dose results
 - $-\alpha_1$, informs about correlations of high or low values of inpout parameter to high dose results
- May also form α_{99} – α_1 , to more clearly identify variables for which extreme values relate to extreme inputs

Conditional mean values

Sobol' indices

- Consider model with three uncertain input parameters x₁, x₂ and x₃ with total output variance V.
- It can be shown that, under certain general conditions, V can be decomposed according to
- $V = V_1 + V_2 + V_3 + V_{12} + V_{13} + V_{23} + V_{123}$
 - $-V_1$ = reduction in total output variance V resulting if variable x_1 known, averaged over the distribution of x_1 -values.
 - V₁ hence a measure of how much input variable x₁ alone contributes to the total output uncertainty,
 - I.e. a measure of the importance of variable x₁ with respect to output uncertainty
- Higher order terms express variance due to interactions
- Sensitivity indices S defined as quotient of the corresponding variance term and the total variance, $S_1 = V_1/V$, etc
- $\Sigma S = S_1 + S_2 + S_3 + S_{12} + S_{13} + S_{23} + S_{123} = 1$
- S also called Sobol' sensitivity indices after Russian mathematician I.M. Sobol'

