JOPRAD – D4.4 – Programme Document Issue 2

Contract Number: 653951

Deliverable n°4.4

Programme Document – The Scientific and Technical Basis of a Future Joint Programme on Radioactive Waste Management and Disposal

Work Package 4

Date of issue of this report:Issue 3, 19/12/2017Report number of pages:103Start date of project:01/06/2015Duration:30 Months

Project	Project co-funded by the European Commission under the EURATOM Research and Training Programme on Nuclear Energy within the Horizon 2020 Framework Programme							
	Dissemination Level							
PU Public								
РР	PP Restricted to other programme participants (including the Commission Services)							
RE	RE Restricted to a group specified by the partners of the JOPRAD project							
CO	Confidential, only for partners of the JOPRAD project							

Abstract

This Programme Document sets out the scientific and technical basis of a future Joint Programme on Radioactive Waste Management and Disposal. In its current form, it is a deliverable of the EC 'Towards a Joint Programme on Radioactive Waste Disposal - JOPRAD' project and represents the views of JOPRAD participants on research, development and demonstration (RD&D) priorities considered as suitable for Joint Programming. The JOPRAD Project was established in 2015 with the objective of completing initial preparatory work for the potential setting up of Joint Programming on radioactive waste disposal, the scope of which has since broadened to cover radioactive waste management and disposal so that it also captures related pre-disposal activities.

To obtain the support of the wider European Radioactive Waste Community, the contents herein were disseminated and the draft document made available for open consultation during the period March – April 2017. Finalisation and issue to the European Commission is expected by the end of December 2017. After this time, it is anticipated that this Programme Document (in its final form of a Strategic Research Agenda) will be taken over in-part or wholly by those responding to the European Commission EURATOM H2020 Call (WP2018) in the form of a Joint Programme Proposal.

JOPRAD participants include a sub-set of European Radioactive Waste Management Organisations, Regulatory Technical Support Organisations, Research Entities and Civil Society experts, representative of the Actor Groups mandated to conduct or manage RD&D in relation to Radioactive Waste Management within Member States of the European Union. To identify the RD&D priorities of common interest between the JOPRAD participants and Actor Groups, an open and transparent process has been used and the reasons for selection/rejection of potential activities fully explained.

Table of Contents

A	bstr	ract	2
1.		Introduction	7
	1.1	Joint Programming on Radioactive Waste Management and Disposal	7
	1.2	The 'Towards a Joint Programme on Radioactive Waste Disposal - JOPRAD' Project	7
	1.3	Scope of Joint Programming considered by the JOPRAD Project	9
	1.4	Participants in Joint Programming	9
	1.5	Vision for Joint Programming	10
	1.6	Boundary Conditions and Strategic Objectives for Joint Programming	11
	1.7	Status of this Programme Document	12
2.		Actors and Interest Groups	13
	2.1	Technical Support Organisations	15
	2.2	Research Entities	15
	2.3	Waste Management Organisations	16
	2.4	Civil Society	16
	2.5	Waste Producer Organisations	16
3.		Integrated Knowledge Management System (IKMS) of a future Joint Programme	
			18
	3.1	Objectives, Scope and Audience	18
		3.1.1 Objectives	18
		3.1.2 Scope	18
	2.2	3.1.3 Target Audience	19
		Knowledge Management – Expected Impacts	19
		Foreseen Knowledge Management Activities	19
4	3.2	Future implementation of the IKMS component of the Joint Programme	20
4.		Methodology for identifying the scientific and technical basis of the Strategic Research Agenda (SRA)	21
	4.1	Introduction	21
	4.2	Step 1: Compiling Activities for Inclusion	21
		4.2.1 Scope of the JOPRAD SRA	21
		4.2.2 Structure and terminology of the SRA	22
		4.2.3 Compilation of activities suggested for Joint Programme by the WMO, TSO and RE SRAs	22
	4.3	Step 2: Surveying Representative Joint Programme Actor Views	23
	4.4	Step 3: Identifying Priorities and Activities of High Common Interest	24
	4.5	Step 4: 1st Draft SRA	25
	4.6	Step 5: SRA Consultation and Finalisation	25

5.	JOPR	AD Strategic Research Agenda for European Joint Programming	27
	5.1 Strateg	ic Theme 1: Building Understanding	28
	1.1 Inv	entory, Wasteform and Waste Characterisation	28
	1.2 Wa	ste Package	35
	1.3 Cor	nsequences of Storage	38
	1.4 Nea	r-field and Engineered Barrier System	39
	1.5 Gas	Generation and Transport	45
	1.6 Rad	lionuclide and Chemical Species Migration	48
		osphere ic Theme 2: Building Confidence	55 59
	2.1 Saf	ety Case	59
	2.2 Pos	t-closure process modelling and upscaling	63
	2.3 Nu	nerical Tools	67
	2.4 Op	erational Safety	72
		ctical Implementation ic Theme 3: Integrated Knowledge Management System (IKMS)	75 80
	5.3.1	State-of-Knowledge Handbook	81
	5.3.2	Guidance	82
	5.3.3	Education	82
	5.3.4	Training	83
	5.3.5	Dissemination tools and channels	83
	5.3.6	Strategic studies	83
6.	Socio-l	Political Cross-Cutting Themes	91
7.	Impler	nentation strategy	94
8.	REFE	RENCES	95
Ap	pendix 1:	Programme Document Working Group Representatives	96
Ap	pendix 2:	List of all Organisations contacted with the JOPRAD Questionnaire	97
Ap	pendix 3:	Overview of SRA Strategic Themes, Domains and Sub-Domains	99
Ap	pendix 4:	Changes in 'Level of Common Interest' to Sub-Domains	101
Ар	pendix 5:	Consultation Response – New Domains for Future Consideration in an EJP	102

Glossary

ΔΙΔΡΡ	As Low As Descenably Drestigable
ALARP BEACON	As Low As Reasonably Practicable. EC Project – Bentonite Mechanical Evolution.
-	
BELBAR	EC Project – Long term performance of the engineered barrier and radionuclide transport.
BENIPA	EC Project - Bentonite Barriers in Integrated Performance Assessment.
BAT	Best Available Technology.
CARBOWASTE	EC Project - Treatment and Disposal of Irradiated Graphite and Other Carbonaceous Waste.
CAST	EC Project - CArbon-14 Source Term.
CatClay	EC Project - Processes of Cation Migration in Clay rocks.
CHANCE	EC Project - Characterization of conditioned nuclear waste.
DISCO	EC Project – Disruptive Competition Project.
DOPAS	EC Project – Demonstration Of Plugs And Seals.
DSRS	Disused Sealed Radioactive Sources.
EBS	Engineered Barrier System.
EC	European Commission.
EC DG-RTD	European Commission Directorate General for Research and Innovation.
ECVET	European Credit system for Vocational Education and Training.
EDZ	Excavation Disturbed Zone.
EJP	European Joint Programme.
EURATOM	European Atomic Energy Community.
FEBEX	EC Project - Full-Scale Engineering Barrier Experiment in Crystalline Host Rock.
FIRST-	EC Project - Fast/Instant Release of Safety Relevant Radionuclides from Spent Nuclear
NUCLIDES	Fuel.
FORGE	EC Project - Fate Of Repository Gases.
GDF	Geological Disposal Facility.
Gen IV	Generation IV reactors.
H2020	Horizon 2020.
HLW	High Level Waste.
IAEA	International Atomic Energy Agency.
ICRP	International Commission on Radiological Protection.
IGD-TP	Implementing Geological Disposal Technology Platform.
IKMS	Integrated Knowledge Management System.
ILW	Intermediate Level Waste.
INES	International Nuclear Event Scale.
IRS	Incident Reporting System.
JOPRAD	EC Project - Towards a Joint Programme on Radioactive Waste Disposal Project.
JOPRAD Partners	Organisations who are part of the core JOPRAD Project group, contracted to the EC.
JOPRAD	Organisations which have also been involved in different Working Groups throughout the
Participants	JOPRAD Project who have been involved in the JOPRAD Project.
JPNM	Joint Programme on Nuclear Materials.
JRC	Joint Research Centre.
LAP	Less Advanced Programme defined as a 'Member-States with early-stage RWMD
	programme'.
LLW	Low Level Waste.
LUCOEX	EC Project – Large Underground Concept Experiments.
MELODI	EC Project - Multidisciplinary European Low Dose Initiative.
MIND	EC Project – Microbiology in Nuclear Waste Disposal.
MODERN	EC Project - Monitoring Developments for Safe Repository Operation and Staged Closure.
MODERN 2020	EC Project - Monitoring Developments for Safe Repository Operation and Staged Closure.
NEA	Nuclear Energy Agency.
NF-PRO	EC Project - Near Field Processes.
NTW	Nuclear Transparency Watch.
NUGENIA	NUclear GENeration II & III Association
OECD	Organisation for Economic Co-operation and Development.
PEBS	EC Project – Long-term Performance of Engineered Barrier Systems.
RD&D	Research, Development and Demonstration.

RE	Research Entity.
RECOSY	EC Project – Redox Phenomena Controlling Systems.
REDUPP	EC Project – Reducing Uncertainty in Performance Prediction.
SITEX	EC Project - Sustainable network for Independent Technical EXpertise.
SKIN	EC Project - Slow processes in close-to-equilibrium conditions for radionuclides in
	water/solid systems of relevance to nuclear waste management.
SNETP	Sustainable Nuclear Energy Technology Platform.
SRA	Strategic Research Agenda.
THMC	Thermal Hydro Mechanical and Chemical.
TSO	Technical Support Organisation.
URL	Underground Research Laboratory.
WIPP	Waste Isolation Pilot Plant.
WMO	Waste Management Organisation.

1. Introduction

1.1 Joint Programming on Radioactive Waste Management and Disposal

The overall aim of the Joint Programming process is to pool national research efforts, where the potential for collaboration has been identified. In the field of radioactive waste management and disposal, the benefits of this initiative are five-fold:

- 1. To improve the effectiveness in the use of European research, development and demonstration (RD&D) resources to tackle common challenges in key areas¹;
- 2. To deliver scientific excellence through the use of internationally leading Member State expertise and facilities;
- 3. To develop knowledge management tools, strategic studies, good practice, and transfer of knowledge to ensure the knowledge that has been generated over the past decades in waste management and disposal RD&D, as well as experience from the implementation of disposal programmes, is appropriately distilled, documented, maintained and kept accessible for future generations of experts;
- 4. To support the development of radioactive waste management and disposal capabilities in Member States with early-stage RWMD programme; and
- 5. To promote the accessibility of information and to improve the involvement of Civil Society.

A driver for moving towards Joint Programming is Directive 2011/70/EURATOM (the "Waste Directive"), which aims to establish a Community framework for the responsible and safe management of spent fuel and radioactive waste [1]. The Waste Directive reaffirms the ultimate responsibility of Member States for management of spent fuel and radioactive waste generated in their respective countries. This includes establishing and maintaining national policies and frameworks, and implementing these policies by establishing and implementing National Programmes. The activities within the forthcoming Joint Programme provide support for implementation of the Waste Directive with respect to Expertise and Skills (Art. 8), Transparency (Art. 10) and R&D (Art. 12.1(f)).

1.2 The 'Towards a Joint Programme on Radioactive Waste Disposal - JOPRAD' Project

Following several years of discussion and development, the 'Towards a Joint Programme on Radioactive Waste Disposal - JOPRAD' Project was established in 2015 with the objective of completing initial preparatory work for the potential setting up of Joint Programming on radioactive waste disposal, the scope of which has since broadened to cover radioactive waste management and disposal so that it also captures related pre-disposal activities. Such Joint Programming would bring together, at the European level, those aspects of RD&D activities required within national research programmes where synergy from Joint Programming has been identified. JOPRAD brings together a sub-set of "nationally mandated actors" in research: (i) **Waste Management Organisations** ("WMOs")², (ii) Regulatory **Technical Support**

¹ http://ec.europa.eu/research/era/what-joint-programming_en.html

² The WMOs are represented in the JOPRAD project through the Implementing Geological Disposal Technology Platform (IGD-TP) which is the collaborative body which coordinates RD&D needs of the implementers of geological disposal at the European level (http://www.igdtp.eu/)

Organisations ("TSOs")³, and (iii) **Research Entities** ("REs")⁴. The three steps of the project are:

- 1. Engaging Member States on Joint Programming: Considering the central role of the governmental body to implement the Council Directive (2011/70/EURATOM) in their respective countries, and in collaboration with the EC, JOPRAD has sought to engage in discussion with Member States' representatives in order to develop an appropriate joint programming management structure. The intent is that this will facilitate National Programmes to finance and carry-out activities jointly where there will be added value at the European level, compared with conducting activities at the national level.
- 2. Building on Existing Networks, Programmes and Initiatives to Bring Clear Added Value: Identifying existing (or developing) research programmes or research agendas that could contribute to the identification of common scientific objectives and activities that the "mandated actors" wish to develop in the Joint Programme.
- 3. Agreeing a Long-term Common Vision, Strategic Research Agenda and Roadmap: Drafting of a "Programme Document" (this document) providing the scientific and technical basis for the development of coordinated programmes focused on agreed priorities of common interest between WMOs, TSOs and REs. This is complemented by a report entitled "Setting-Up a European Joint Programme on Radioactive Waste Management and Disposal' which will be published later this year.

In this document, we refer to three different groups as part of JOPRAD: the JOPRAD Partners, the JOPRAD participants and the JOPRAD WG4 members. The JOPRAD Partners include the following organisations:

- Andra, France;
- Bel V, Belgium;
- CNRS, France;
- CVREZ, Czech Republic;
- IRSN, France;
- Joint Research Centre, European Commission;
- MCM Environmental Services Ltd, UK;
- Mutadis, France;
- Radioactive Waste Management, UK; and
- SURAO, Czech Republic.

The JOPRAD participants refer to all other organisations which have also been involved in different Working Groups throughout the JOPRAD Project. The JOPRAD WG4 members are the organisations involved in the formation of this document, as part of the JOPRAD Working Group 4, are listed in Appendix 1.

³ The TSOs are represented, in the JOPRAD project, through the SITEX project (see, http://sitexproject.eu/). The term "Technical Support Organisation" is a generic term referring to organisations fulfilling an "expertise function" as defined by SITEX members, i.e. carrying out activities aimed at providing the technical and scientific basis for notably supporting the decisions made by the national regulatory body

⁴ REs in this context may be nationally funded research agencies and research institutes. Their needs are coordinated within JOPRAD by the French National Centre for Scientific Research (CNRS) (see, http://www.cnrs.fr/).

1.3 Scope of Joint Programming considered by the JOPRAD Project

The JOPRAD project has considered activities for Joint Programming that are related to radioactive waste management and disposal of spent fuel, high level waste (HLW) and intermediate level waste (ILW). The waste classification is based on the IAEA guidance [2] whereby:

- Spent Fuel: Spent nuclear fuel contains significant amounts of fissile material, other actinides and fission products. When spent fuel is removed from a reactor storage pools, it will either be reprocessed, stored for long periods of time, or considered for geological disposal;
- HLW: wastes with levels of activity concentration high enough to generate significant quantities of heat by the radioactive decay process or waste with large amounts of long lived radionuclides that need to be considered in the design of a disposal facility for such waste; and
- ILW: waste that, because of its content, particularly of long lived radionuclides, requires a greater degree of containment and isolation than that provided by near surface disposal.

JOPRAD also considers broader waste management aspects linked with the disposal of the wastes, including⁵:

- Radioactive waste pre-disposal activities, such as waste characterisation, treatment and packaging; and
- Interim storage and transport of radioactive waste.

The scope is necessarily broad, covering predominantly scientific technical studies (i.e. implementation driven RD&D, technology or engineering RD&D). Also considered within the scope is the development of an Integrated Knowledge Management System (IKMS) incorporating cross-cutting issues, such as long-term knowledge management, guidance, strategic studies, and knowledge transfer. Applied multi-disciplinary studies with Civil Society aspects have been considered.

1.4 Participants in Joint Programming

Joint Programming is intended to engage at a European level "**programme owners**" and "**programme managers**". At the highest level, "the programme owners" are the ministries or national/regional authorities in charge of the setting up of the national programmes addressed in the Waste Directive. In the JOPRAD project, where the technical part of the research and development programme associated with the national programme is considered, the "programme owners" are the responsible national or regional authorities and "programme managers" are national actors of research ("mandated actors"). They are financing and/or organising RD&D on radioactive waste management and/or disposal in their responsible national or regional authorities.

Prior to the start of the JOPRAD Project, the Joint Research Centre (JRC) carried out a study based on available public information in order to identify in the 28 EU Member States (and

⁵ JOPRAD did not consider e.g. transmutation, decommissioning, environmental remediation, etc. This does not foreclose extension of the scope in future Joint Programming. In JOPRAD, surface disposal is not excluded, but it is assumed that it does not require specific RD&D and can be addressed within a common IKMS.

Switzerland) the governmental bodies (e.g. ministries), the waste management organizations, and the other entities currently organising and/or funding RD&D on radioactive waste management, along with their respective RD&D objectives. This activity was continued by the JOPRAD project by contacting (with the help of EC Directorate General -RTD (Research and Innovation) services) the Member States' European Atomic Energy Community (EURATOM) Delegates to the Fission Committee [3].

Identification of nationally mandated actors (referred to hereafter as Actors) was based upon information provided by national authorities (authoritative sources) such as the latest Joint Convention⁶ reports that were drafted and published by the Member States for the 2012 review meeting of the Contracting Parties, and the NEA/OECD country reports which disseminate information provided by national authorities. Actors fall into three categories: (i) WMOs, (ii) TSOs, and (iii) nationally funded REs involved in the RD&D of radioactive waste management, under the responsibility of the Member States.

In addition, different Interest Groups have been identified during JOPRAD. These include Member States with early-stage RWMD programmes, **Civil Society**⁷ and **Waste Producers**⁸.

It is noted that the distinction between TSOs and REs in several Member States is a somewhat grey area as several Research Entities also fulfil (at least partially) an expertise function in their country and therefore also meet the conditions associated with the terms of a "TSO".

JOPRAD partners (through the European Commission) liaised with Member State representatives on the objectives and benefits of the possible Joint Programming. Member States were then invited to mandate the organisations who may take part in Joint Programming. A Mid-Term workshop was held in Prague in September 2016 to provide a forum for discussion amongst the decision-makers of national research programmes across Member States and the European Commission on the different options for jointly establishing and implementing a Joint Programme. The Member States' representatives and their identified programme owners/managers will also be invited to the JOPRAD final workshop in November 2017 in Prague.

1.5 Vision for Joint Programming

A Vision statement for Joint Programming on radioactive waste management and disposal has been developed by JOPRAD participants:

"A step change in European collaboration towards safe radioactive waste management and disposal through a credible and sustained science and technology programme fostering mutual understanding and trust", which includes:

• A consensus programme between technical support organisations, implementers and researchers throughout the decades covering the development and operation of radioactive waste management and disposal facilities;

⁶ Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management: the Convention calls for review meetings of Contracting Parties. Each Contracting Party is required to submit a national report to each review meeting that addresses measures taken to implement each of the obligations of the Convention.

⁷ Civil Society here is a group of representatives of the European Civil Society Organisations. The group is a gathering of 35 organisations from 18 different countries in Europe.

⁸ Waste Producers have been identified within JOPRAD as an Interest Group, and have been engaged via dissemination and consultation activities.

- Enhancing the understanding of the risks and uncertainties; and
- Ensuring societal visibility and transparency of research, development and demonstration.
- 1.6 Boundary Conditions and Strategic Objectives for Joint Programming

A number of boundary conditions and strategic objectives have been derived from the JOPRAD documents outlining the key priorities of WMOs, TSOs and Research Entities [4, 5, 6]:

- Maintenance of Independence It is possible for different Actors with different roles to work together, without prejudice to their own role in the national regulatory process. Most important is the independence between the "expertise function" (TSOs and Research Entities) and the "implementing function" (WMO). Different parties (WMOs and TSOs in particular) can have common agreement of what RD&D should be done and how, and can collaborate in the oversight of that research, but must take their own view on the interpretation of results and data generated [7];
- **Transparent Governance** A transparent, balanced and efficient mode of governance, taking into concern all participants (including Civil Society) is a prerequisite of joint research between WMOs, TSOs and REs;
- Scientific Excellence RD&D activities shall focus on achieving passive safety (safety of a disposal facility is provided for by means of passive features inherent in the characteristics of the site and the facility and the characteristics of the waste packages, together with certain institutional controls, particularly for surface facilities [8]) and reducing uncertainties through excellence in science. Research actions are guided by a long-term vision, as required by the European Commission [1];
- **Balanced Programme** Recognising that different Member States have a wide variance in the status of their National Programme, the scope should support programmes at all stages of advancement;
- Added Value Ensuring that Joint Programming provides real added value (e.g. improved financial arrangements, improved stakeholder acceptance of outputs, more robust RD&D outputs, etc.). Administration costs should not exceed a clearly defined maximum percentage (including ongoing legal, EC admin., etc.) versus money spent on the science and demonstration (e.g. administration should not exceed 10% of total costs and should preferably be lower);
- **Inclusiveness** Ensuring that the different categories of Actors and Groups of Interest are involved in the definition and implementation of the Joint Programme.
- Equitable Financing Financial costs (financial/in-kind) should be equitable; participants should contribute what they can afford, or what they consider matches their interest in a project;
- **Complementary Participation** Participation in Joint Programming is complementary to RD&D activities which will continue to be undertaken nationally or jointly outside of the auspices of Joint Programming where required;
- **Tangible Results** The scope is appropriately prioritised and focused on the objective to achieve tangible results within a reasonable timeframe. A key aspect is that participants recognise that Joint Programming is a distinct change from past work (and other collaborative working) on radioactive waste management and geological disposal. Translating the societal challenge of radioactive waste management and disposal into operational reality requires the generation of new knowledge, combined with the maintenance and transfer of existing knowledge.

1.7 Status of this Programme Document

This Programme Document predominantly comprises a Strategic Research Agenda (SRA) presented in Section 5. It incorporates the priorities of common interest between WMOs, TSOs and REs and forms the scientific and technical basis of a future Joint Programme. It represents a 5-10 year 'snap-shot' in time⁹. It is foreseen as an input to the setting up of a Joint Programme.

This Programme Document has been drafted by the JOPRAD Project Working Group 4 participants and has been disseminated to the Actors whose input so far is the basis for the present draft. This Programme Document has been disseminated for open consultation via publication on the JOPRAD web page and updated to address comments from the consultation prior to final issue to the European Commission in November 2017.

⁹ Although it is noted that a Joint Programme may run for longer than this.

2. Actors and Interest Groups

Geological disposal of spent fuel and HLW has been the primary focus of EU funding under the EURATOM Research and Education Programme over the past decades. EURATOM funding was initially based around RD&D contracts on safety issues and underlying science with single research organizations. Governance was achieved through the setting up of contractual arrangements with consortia of research organisations and extending the scope to include the direct involvement of stakeholders in geological disposal projects. Further progress was made when WMOs organized themselves into the Implementing Geological Disposal Technology Platform (IGD-TP), providing advice on the content of the calls through their Strategic Research Agenda [9] and Deployment Plan [10]. In parallel, an independent network of TSOs, the <u>S</u>ustainable network for <u>Independent <u>T</u>echnical <u>EX</u>pertise (SITEX) was formed in order to ensure independent technical expertise in the field of safety of geological disposal of radioactive waste. SITEX have now developed a final version of their SRA as input to the JOPRAD project [5]. In addition, as part of the JOPRAD project, a network of REs has been established and they have developed an SRA defining their specific research priorities [6].</u>

The role of Actors and Interest Groups in developing the JOPRAD programme document and potential participation in Joint Programming is described in Figure 1. Within JOPRAD, aspects reflecting interests of Civil Society have been identified by experts, and were introduced to the project via the TSO SRA (SITEX), which specifically considered stakeholder engagement, recognising the importance of addressing social and citizen sciences in research programmes dedicated to radioactive waste management. In a future Joint Programme, the mechanism for explicitly incorporating Civil Society, Member-States with early-stage RWMD programme¹⁰ and Waste Producer inputs could be made via external stakeholder groups or dedicated Interest Groups. At present, it should be noted that they have not been comprehensively considered during development of the JOPRAD SRA.

Within the JOPRAD project, the WMOs, TSOs, REs and Civil Society experts have identified scientific and technical activities that they have prioritised individually in their different SRAs as suitable for Joint Programming, as well as cross-cutting activities. These inputs were then jointly considered and prioritised as a basis for this document, as described further in Section 4. The expectations and priorities of the different actors are also addressed in detail in the "Conditions for implementing a Joint Programme" [7].

¹⁰ A special role will be given in Joint Programming to knowledge transfer from the more advanced to the less advanced programmes. Besides technical/scientific knowledge, experience gained by some countries in setting up decision making processes is of interest, in particular, how to ensure the development and maintenance of necessary skills and the establishment of safety approaches to building a safety case [10]. The engagement of less advanced programmes in Joint Programming was the main objective of the Regional Meeting held in May 2016 in Bucharest.

JOPRAD - D4.4 - Programme Document Issue 2

Figure 1: Scope and participants of the JOPRAD Project (left), scope and anticipated participants of the Joint Programme (bottom right), and outline of a Future Joint Programme (top right).

Page 14

© JOPRAD

2.1 Technical Support Organisations

The general objective of SITEX is to develop, at the international level, high quality and independent expertise in the safety of radioactive waste management and geological disposal of radioactive waste. The objective of the SRA produced by SITEX-II [5] is to identify and prioritise the needs for competence and skills development of the expertise function, at the international and the European level. This was based on a transparent methodology and takes into consideration the different states of advancement of radioactive waste management and geological disposal programmes and the concerns of Civil Society. The scope of the SRA covers all the topics relevant to the expertise function of TSOs, namely to assess whether geological disposal facilities are developed and will be constructed, operated and closed in a safe manner. Therefore, topics related to pre- and post-closure safety as well as to the technical feasibility of geological disposal are considered most important.

The scope of the SITEX SRA includes actions dedicated to radioactive waste pre-treatment, treatment and conditioning, as well as transport and storage which impacts on the safety of geological disposal facilities. However, the first version of the SITEX SRA was specifically focused on disposal in underground facilities. Since predisposal management of radioactive waste and spent fuel is considered as a key main topic by TSOs, associated topics were also identified in the framework of the JOPRAD project for inclusion in the Programme Document [11].

The independence of the regulatory function calls for the support of an independent expertise function that develops and maintains the necessary knowledge and skills in the field of nuclear safety. The expertise function's RD&D objectives may differ from those adopted by the WMOs. However, there are activities of interest to the expertise functions that overlap to a significant extent with the RD&D activities performed by the WMOs.

The regulatory function (safety authorities, regulators) supported by the expertise function(s) (technical support organisations, universities, research institutes, commercial organisations), assesses the safety case prepared by the operators and regulates the development, operation and closure of disposal facilities.

2.2 Research Entities

The goal of the REs SRA [6] in European Joint Programming is to develop a long-term vision on an integrated fundamental scientific understanding for all concepts related to the disposal of long-lived intermediate level and highly radioactive waste and spent nuclear fuel in geological disposal facilities within Europe, including all aspects of storage, transport and final disposal. European Joint Programming must therefore aim to support disposal implementation programmes at all stages of advancement, through scientific excellence and leading-edge research on basic components and generic processes. The outcomes will be oriented towards developing understanding and tools which can be applied to analysing the evolution of complex site-specific systems in support of long-term safety¹¹.

Through this goal, individual Member States will be supported in providing assurance to the expert community, Actors involved in the implementation of geological disposal projects, decision makers and the public, that geological disposal of radioactive waste is underpinned by the best science available at the time. REs consider first and foremost safety from a scientific-technical point of view, and contribute to a scientific assessment basis that is reliable and sound. The REs' SRA may be useful for individual Member States and research organisations when

¹¹ Throughout this document, 'long-term safety' implicitly refers to long-term safety including environmental protection.

deciding upon their own RD&D programmes. For Joint Programming the REs' SRA has been used as a basis to identify common RD&D issues between WMOs, TSOs and REs.

2.3 Waste Management Organisations

The Implementing Geological Disposal of Radioactive Waste Technology Platform's (IGD-TP's) work is driven by ten waste management organisations and one governmental body, that share a common vision that "by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe" (Vision 2025).

The IGD-TP's SRA [9] is aimed at identifying the main RD&D issues that need a coordinated effort over the next years in order to achieve Vision 2025. The SRA did not identify a need for cooperative work on research and other topics such as siting or radioactive waste inventory evaluation, as these areas are advanced in programmes close to implementation. Nevertheless, experienced feedback from such work represents a vital link between the programmes closest to licensing and those which are currently at earlier stages in their implementation of geological disposal programmes.

Because the IGD-TP SRA identifies the key topics of RD&D that have the greatest potential to support geological disposal implementation through enhanced cooperation in Europe, it also provides valuable input in identifying topics for future calls for proposals issued by the EC framework programme. The SRA is well suited to this role as many of the topics have been established collectively through discussions among many European WMOs and are of interest to IGD-TP members. Indeed, the IGD-TP SRA is focussed on developing areas of geological disposal facility safety and technological development through the combined use of resources, which represents a major objective of the EC framework programme.

The IGD-TP SRA was created with the intent of creating synergies, co-operation and coordination, both internally between the IGD-TP participants and with external activities that take place in other technology platforms and within other international fora.

The state of development of the waste management programme is not homogeneous amongst Member States; some countries are at or close to license application, such as, Finland, Sweden and France, and at the opposite end of the disposal spectrum there are several New Member States whose deep geological disposal programmes are in the very early stages and no systematic research programmes exist (such as Croatia, Italy, Lithuania, Poland, Romania, Slovenia, Slovakia). In these cases, the disposal concept is only generic and in most of these countries needs updating, taking into account the current socio-economic context. The exceptions are the Czech Republic and Hungary, which have already initiated siting processes.

2.4 Civil Society

The socio-political dimension is a critical aspect to the successful implementation of safe radioactive waste management and disposal. In the context of this project, "Civil Society" is defined as a group of representatives of the European Civil Society Organisations (CSOs), involved in radioactive waste management activities at EU or national level. This group has interacted with JOPRAD participants throughout the project via Working Group 3. It represents 35 organisations from 18 countries in Europe. This Civil Society group has been assembled under the auspices of the Working Group for Radioactive Waste Management of the Nuclear Transparency Watch (NTW) network, in cooperation with MKG (Swedish NGO Office for Nuclear Waste Management Review). Strengthening and maintaining a high level of nuclear safety in Europe is a common concern for all members of this group without prejudice to their position with regards to nuclear energy.

Within the JOPRAD project, experts have been engaged to establish the expectations and views of Civil Society regarding the conditions and means for setting-up a Joint Programme and regarding their potential involvement in the governance of a future Joint Programme.

Within this Programme Document and drafting of the JOPRAD SRA, socio-political themes proposed by Civil Society experts have been considered for inclusion and, where possible, have been integrated with technical sub-domains. Additionally, potential mechanisms for interacting with Civil Society on the identified RD&D activities of common interest between the TSOs, WMOs and REs are identified. A guide for the evaluation by Civil Society of potential governance patterns of RD&D for European Joint Programming on Geological Disposal has been published through JOPRAD [12].

2.5 Waste Producer Organisations

Although not formally an Actor in the JOPRAD project, waste producer organisations have been involved in the later stages via the NUclear GENeration II & III Association (NUGENIA). NUGENIA is an association, including members from 26 countries, dedicated to the research and development of nuclear fission technologies, with a focus on Generation II and III nuclear plants. It aims to be an integrated framework for R&D to ensure safe, reliable and competitive Gen II & III fission technologies, which:

- Fosters collaboration between industry, SMEs, research organisations, academia and technical safety organisations;
- Builds knowledge and expertise;
- Generates R&D results with added value for the nuclear community.

Although involved late in the project, NUGENIA's contribution has been valuable and sets a foundation for future collaboration in projects influencing the wasteform for final disposal.

3. Integrated Knowledge Management System (IKMS) of a future Joint Programme

3.1 Objectives, Scope and Audience

3.1.1 Objectives

It is essential that cross-cutting activities are established in order to implement an efficient and integrated Knowledge Management programme at EU level in order to meet the following objectives:

Preservation / **capitalisation of generated knowledge:** Ensure that the public knowledge generated over the past, ongoing and future RD&D activities is preserved and made accessible for application by the target audience (see Section 3.1.3).

Member-States with more advanced programmes have acquired over the past decades specific experience, know-what and know-how on how to establish a national RD&D programme for the safe management of spent fuel and radioactive waste.

Transfer of scientific-technical knowledge: To a broad set of Actors, including Member-States with early-stage RWM programme. This challenge includes ensuring that Member-States with national programmes at an early-stage of implementation can take advantage of existing knowledge and know-how from past and on-going activities, projects and programmes.

Transfer of knowledge between generations: Given the long duration of RWM programmes, the generation of scientists involved since the early phase of RD&D programmes are retiring. This is therefore essential for the organisations to manage the existing and forthcoming knowledge in such a way that present and future professionals entering the field of RWMD can benefit from this knowledge, i.e. that the knowledge is not lost with professionals retiring or moving to other fields.

Therefore, the objective is to ensure that the necessary expertise and skills are maintained through generations of experts in view of the long lead-times and operational time-spans (several decades) for radioactive waste management and disposal by providing training and mobility for researchers.

Dissemination of knowledge: To disseminate knowledge and demonstrate progress, results and added-value of the European Joint Programme to a wide audience.

3.1.2 Scope

In this context, we define 'knowledge' as the scientific and technical knowledge generated in RD&D activities in radioactive waste management; the experience, know-what and know-how of the Member-States around the development and implementation of a R&D national programme, as well as experience from the implementation of disposal programmes. This incorporates notable scientific and technical knowledge generated over the past collaborative research activities at the European level (e.g., collaborative projects funded within the EURATOM Research and Training programmes: i) under FP6, FP7 (BELBAR, CARBOWASTE, CAST, CATCLAY, DOPAS, FIRST-NUCLIDES, FORGE, LUCOEX, MODERN, PEBS, RECOSY, REDUPP...), ii) under H2020 (Cebama, MIND, Modern2020, BEACON, CHANCE, DISCO and THERAMIN), iii) future projects to be carried out within the forthcoming Joint Programme, and iv) any relevant and publicly available knowledge, including the relevant science base).

JOPRAD – D4.4 – Programme Document Issue 2

3.1.3 Target Audience

The outcome of such activities will be of interest for:

- Scientists and experts entering into and working in the field of RWMD in general, and especially for the Member-States that are at an early stage in the development of their national programme, in order to avoid duplication of RD&D work and make the best use of resources, this includes the experts reviewing safety assessment, safety cases and license applications;
- Policy and decision-makers, including those required for building the necessary R&D, expertise and skills, and transparency programmes is Member States at less advanced implementation stages; and
- Broader interested community (incl. NGOs involved in RWM, local stakeholders...).

3.2 Knowledge Management – Expected Impacts

If efficient, the integrated Knowledge Management System will:

- Contribute to bridge the risk of shortage in skills /competences in view of the long lead-times and operational time-spans for RWMD,
- Facilitate transfer of acquired scientific and technical public knowledge between Member-States at different stages of advancement in the implementation of their national RWM programmes,
- Lead to an efficient use of the RD&D resources at the European level by sharing and advancing existing knowledge rather than repeating and duplicating RD&D work,
- Provide the potential for a commonly accepted knowledge base for implementation and assessment; and
- To a larger extent, such integrated knowledge management will contribute to the responsible and safe management of radioactive waste, in particular in view of the long implementation time schedules for disposal of spent fuel and high-level waste. This is also an important aspect of the Member-States implementing their obligations under the Waste Directive.
- 3.3 Foreseen Knowledge Management Activities

In order to meet the objectives listed above, the Knowledge Management activities shall consist of i) producing **scientific and technical State-of-Knowledge Documents** as an intelligent synthesis for specific scientific and technical topics in the field of RWMD, ii) developing **guidance documents** for planning and implementing research in support of the development of radioactive waste disposal solutions, iii) establishing a training portfolio, delivering **scientific and technical training courses** and fostering **researchers' mobility**.

At the EJP level, the overall approach is to make use, where possible, of existing activities, projects, international organization initiatives, training opportunities, etc. without duplicating them. Links with existing activities should be made as soon as it is possible.

All the outcomes of these Knowledge Management activities (State-of-Knowledge Documents, Guidance Documents, Training Materials) as well as the outcomes of past, ongoing and future RD&D and networking activities (deliverables, publications, reports...) will be preserved and made accessible on a public **web-structured Knowledge Management platform in view of their preservation/capitalisation/transfer and dissemination**. JRC offers to host such a Knowledge Management System web platform (open access). Hosting of the Knowledge

Handbook on a separate WiKi platform, with linking to the KM Platform would enable a transparent and flexible implementation of the Knowledge Handbook.

3.4 Future implementation of the IKMS component of the Joint Programme

Preparatory work has been carried out within the JOPRAD project to consider how implementation of the IKMS component of the Joint Programme could be practically achieved [13]. The basis of this document is that the IKMS activities are specified and managed by supporting Actors, with the administrative framework provided and hosted by the European Joint Research Centre (JRC). Preparatory work (described further in Section 6) to set-up a Joint Programme includes the formation of a dedicated working group which will continue to develop the terms of reference for ensuring such knowledge management activities are integrated, within the overall framework of the Joint Programme governance scheme. Common topics of interest for the IKMS area have been identified, following the methodology outlined in Section 4, and are described in further detail in Section 5.

4. Methodology for identifying the scientific and technical basis of the Strategic Research Agenda (SRA)

4.1 Introduction

Within Work Package 3 of the JOPRAD project, working groups were established for TSOs, WMOs and REs. The work done here for the Joint Programme is based on the outcomes of these working groups. The WMOs, TSOs, REs and experts from Civil Society have worked together to identify different activities that could be part of a future Joint Programme. Within the different activities considered, the actors participating in JOPRAD have indicated their preferences and priorities based on their own perceived needs. Within Work Package 4 a stepwise process has been used to further define and prioritise the scientific and technical domains of common interest which are proposed in the Strategic Research Agenda (SRA) contained in Section 5. This has included the following steps:

- 1. **Compiling Activities for Inclusion**: Drafting a first compilation of combined activities suggested as suitable for inclusion within a potential future Joint Programme. A key part of this step was to organise and coalesce suggested activities (identified from the WMO, TSO and RE-specific SRAs) into a suitable structure, considering the different types of activities suggested and the adoption of a common terminology and appropriate scope definition for a potential future Joint Programme SRA;
- 2. Surveying Representative Joint Programme Actor Views: Eliciting JOPRAD participants' opinions on their preferences and motivations for prioritising activities. This was completed by issuing a comprehensive questionnaire of suggested activities, allowing JOPRAD participants to comment and express views on activities suggested by all the Actor groups for the first time;
- 3. Identifying Priorities and Activities of High Common Interest: Analysing the questionnaire responses to identify the themes with high common interest, and the adoption of screening criteria used to prioritise what should be included in the SRA. This step included development of a methodology to cross-check that all prioritised activities met with the established boundary conditions for the Joint Programme;
- 4. 1st **Draft SRA:** Drafting a first SRA with a clear description of prioritised RD&D activities agreed and supported by all JOPRAD participants;
- 5. **SRA Consultation and Finalisation:** Consultation of the draft SRA within the broader European radioactive waste management and disposal community. Obtaining feedback and end-user input to facilitate updating of the final SRA.

4.2 Step 1: Compiling Activities for Inclusion

4.2.1 Scope of the JOPRAD SRA

As previously specified in Section 1.3, from the activities suggested by the Actors participating in the JOPRAD project (WMOs, TSO and REs), the scope includes the following technical and scientific aspects of radioactive waste management and disposal, which are the focus of Section 5 (the JOPRAD SRA):

- Radioactive waste characterisation, treatment and packaging;
- Interim storage and transport of radioactive waste; and

• Geological disposal of spent fuel, HLW and ILW¹².

Socio-political themes have also been captured within the JOPRAD SRA and are discussed further in Section 6. Recognising the complex nature and long-term dimension of safe radioactive waste management and disposal, successful implementation requires integration of the technical and scientific basis within a broader socio-political framework. Therefore, dedicated themes have been identified for consideration in the future Joint Programme, based on their relevance to specific technical projects. It is anticipated that the Joint Programme would not include separate projects on socio-political themes, but that technical and scientific projects, derived from the scope descriptions in Section 5, may include specific tasks related to socio-political aspects if they are complementary to the technical objectives. This approach has worked well in recent EC Projects (e.g. the Modern2020 project, which has included a specific work package on effectively engaging local stakeholders in RD&D on monitoring for geological disposal).

4.2.2 Structure and terminology of the SRA

To appropriately structure, group and communicate suggested activities, they have been categorised into three different levels:

- Level 1 Strategic Themes;
- Level 2 Domains;
- Level 3 Sub-Domains.

To simplify this structure, all of the strategic themes, domains and sub-domains have been numbered i.e. Strategic Theme 1, Domain 3, Sub-Domain 1 would be 1.3.1.

The definitions of the Strategic Themes, Domains and Sub-Domains are presented in detail in Section 5. To avoid conflict with terminology used elsewhere, or with what might eventually be used within the actual Joint Programme, it was agreed to avoid the use of: Project; Topic; Task; or Area.

Within the sub-domains identified in the JOPRAD SRA, specific activities indicated as being 'implementation driven' refers to applied science and technological developments critical for implementing safe radioactive waste management and disposal.

4.2.3 Compilation of activities suggested for Joint Programme by the WMO, TSO and RE SRAs

In the first instance the RD&D activities suggested for inclusion within a future Joint Programme by each of the actors were compared, and activities of common interest between the respective SRAs of two or more of the JOPRAD working groups used as the basis for a first compilation (as represented by the darker central shaded areas of overlap in Figure 3). The activities suggested at this step totalled over 150 individually identified RD&D needs or cross-cutting activities. Also included and considered was the inclusion of activities co-developed between the SITEX working group and representatives of Civil Society, ensuring that those technical, scientific or engineering activities with social science facets were accounted for and clearly visible.

¹² In JOPRAD, surface disposal is not excluded, but it is assumed that it does not require specific RD&D and can be addressed within the IKMS

Figure 3: Representation of common areas of interest for Joint Programming.

As per the structure and definitions presented in Section 4.2.2, this first compilation of activities was organised by strategic theme, domain and sub-domain, with clear reference to each of the suggested activities' origin (i.e. the WMO, TSO, or RE SRA). This process underwent several iterations in successive Work Package 4 meetings.

4.3 Step 2: Surveying Representative Joint Programme Actor Views

Once the first compilation was prepared, it was recognised by the Work Package 4 Working Group, that this did not represent an exhaustive list of all the potential activities that could enter into the scope of a potential future Joint Programme. It simply indicated activities for which a sufficient level of common interest has been expressed among the JOPRAD contributors. Therefore, it was considered necessary to obtain broader input by means of a questionnaire, primarily to further refine the compilation, identify any gaps and understand individual organisations' priorities against each activity.

A questionnaire was subsequently issued to each of the organisations involved with the original WMO, TSO and RE working groups, and to all organisations identified as 'potential mandated actors' within JOPRAD Working Group 2. A full list of the organisations issued with the questionnaire is outlined in Appendix 2. The questions were framed to understand each organisations own individual priorities and to establish:

- Clear drivers for each RD&D activity if they considered it implementation-driven or driven by enhanced understanding of the underlying science;
- Where IKMS activities would be beneficial;
- Timescales of interest high interest for 2019-2024, or beyond; and
- Financial/in-kind support their interest to participate by providing a financial contribution or effort in-kind, versus interest supporting the steering of a project (i.e. as an end-user).

37 individual organisations responded to the questionnaire, representing 16 European countries in addition to the European Joint-Research Centre (JRC).

Country	WMO Organisation	TSO Organisation	RE Organisation
Belgium (BE)	ONDRAF/NIRAS	BelV	SCK.CEN
Czech Republic (CZ)	SURAO	CVREZ	CTU
Finland (FI)	POSIVA		
France (FR)	ANDRA	ISRN	4 Combined (CEA, CNRS, UPMC, BGRM)
Germany (DB)	BfS; BMWi	GRS	HGF
Hungary (HU)	PURAM	TSE	
Italy (IT)	SOGIN		Combined
Lithuania (LT)		CPST	LEI
Netherlands (NL)	COVRA	NRG	TNO
Poland (PO)			PGI
Slovakia (SK)		DECOM	
Slovenia (SO)	ARAO		
Spain (ESP)	ENRESA	CIEMAT	CIEMAT
Sweden (SE)	SKB		
Switzerland (CH)	NAGRA		PSI
United Kingdom (UK)	RWM		
TOTAL	14	9	14

Table 1: JOPRAD WP4 Questionnaire Responders (organised by country and type of organisation)¹³

4.4 Step 3: Identifying Priorities and Activities of High Common Interest

The questionnaire responses were collated and, using the data and information received (and after some merging of common topics), the compilation of \sim 92 activities was screened using the following method to identify priorities and to confirm the activities of high common interest:

- 1. The number of responder organisations indicating an activity as 'high' or 'medium' interest for the period 2019-2024 was totalled for each Actor group (i.e. for TSOs, WMOs, and REs);
- 2. The 'High' and 'Medium' votes for the activities were then weighted (using a score of 1 for 'High' and 0.5 for 'Medium') and normalised to account for the total number of organisations which voted from each Actor Group. The scores from each Actor group

were then totalled, resulting in a combined score for each activity of between 0 and 18 (0 being lowest priority and 18 being the highest);

- 3. Using the range of 0-18, each activity was subsequently ranked with an overall 'Level of Common Interest' of High, Medium, or Low using the following criteria:
 - >10.01 High;
 - 6.01-10.00 Medium;
 - 0-6 Low.
- 4. Based on the comments received during the Consultation phase, some of the 'Level of Common Interests' were changed based on a transparent methodology, outlined in Section 4.6 below.

Using this method, a total of 63 activities were identified as having a High or Medium Level of Common Interest, with 29 identifying as having a Low Level of Common Interest.

All of these have been grouped into a hierarchy of Strategic Themes, Domains and Sub-Domains which form the scientific and technical basis of the JOPRAD SRA described in Chapter 5. An overview of all 92 sub-domains is provided in Chapter 5, with the sub-domains with a Low Level of Common Interest differentiated by italics and a grey background.

4.5 Step 4: 1st Draft SRA

In addition to identifying the priorities and activities of high common interest, additional data collected from the questionnaire have been used to develop SRA sub-domain descriptions. For each sub-domain, a proforma (see example format in Table 2) is presented to communicate a clear and concise scope definition of what is proposed, including additional context and background.

X.	X.X	(Sub-Do	main Number) Sub-Dor	nain	Title	
Background		Research Needs/Drive	er			
			Research Objectives			
Implementation Driven						\checkmark
Transfer of Knowledge to LA	Ps					\checkmark
Level of Common Interest						
High	~	Medium	1		Low	

Table 2: Format and content of Sub-domain tables used in the SRA.

4.6 Step 5: SRA Consultation and Finalisation

This Programme Document has been drafted within the JOPRAD project and has been disseminated for open consultation via publication on the JOPRAD web page. The Programme Document was presented at a workshop on 4th April 2017 in London.

This final document has taken into account comments from the consultation and is scheduled for issuing to the European Commission in November 2017. Based on the consultation comments, some of the sub-domains have had their 'Level of Common Interest' altered. The methodology for this, and which sub-domains have changed Levels is outlined in Appendix 4.

All of these changes have been incorporated into this document and are reflected in the domain overviews and sub-domain tables.

In addition to changes to existing sub-domains, one new sub-domain was suggested. This has been included as Appendix 5, and will be incorporated into the EJP SRA for future consideration.

5. JOPRAD Strategic Research Agenda for European Joint Programming

Recognising the different types of activities suggested and prioritised by the WMOs, TSOs, and REs for inclusion within the JOPRAD Joint Programme SRA, at the highest level, three Strategic Themes have been considered, each further sub-divided into Domains and Sub-Domains.

The Strategic Themes (1, 2 and 3 in bold) and Domains (bullets) are represented in Figure 5 below. For a complete list of the SRA, including the strategic themes, the domains and the sub-domains please see Appendix 3.

In this Section, each of the domains are described in more detail, including a list of the subdomains, their level of common interest, and their background, research drive/need, and research objective outlined in the sub-domain tables.

Figure 4: Strategic Themes and Domains of the JOPRAD Joint Programme SRA.

JOPRAD – D4.4 – Programme Document Issue 2

5.1 Strategic Theme 1: Building Understanding

1.1 Inventory, Wasteform and Waste Characterisation

The nature and quantity of wastes for disposal, including their chemical and physical form, their packaging / conditioning and their radionuclide and chemical composition are known as the inventory for disposal. Improved understanding of (i) the inventory, (ii) the radionuclide source term and (iii) more generally, the evolution of the waste behaviour throughout the planned storage, operational and post-closure phases of a geological disposal facility lifecycle is important both for designing the disposal system and to the associated safety case. This domain comprises RD&D associated with improving this understanding (characterization, conditioning, treatment, radionuclide source-term, etc.). The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The level of common interest for the sub-domains are shown in Figure 5 below.

- 1.1.1 Inventory Uncertainty;
- 1.1.2 Waste Characterisation Techniques;
- 1.1.3 Non-mature and Problematic Waste Conditioning;
- 1.1.4 Radionuclide Release from Wasteforms other than Spent Fuel;
- 1.1.5 Geopolymers;
- 1.1.6 Fourth Generation (Gen (IV)) wastes;
- 1.1.7 Chemotoxic Species;
- 1.1.8 Novel Radioactive Waste Treatment Techniques;
- 1.1.9 Spent Fuel Evolution;
- 1.1.10 Spent Fuel Fissile Content.

1.1.1 Inventory Uncertainty

and organic compounds) of was geological repository is importa closure safety cases. Data qualit with uncertainty often dominate in general only a small subset of case. Furthermore, where sampl consideration there is little bene analytical accuracy. Therefore, a case requirements, inventory an	tes r nt fo y of d by f rad ing u fit to an in	r the transport, operations and post- waste inventories is often variable, waste heterogeneity. Nevertheless, ionuclides will dominate the safety incertainty is the dominant be gained from enhancing tegrated understanding of safety	species that dominate the transport, operations and post- closure safety cases and targeted			
case requirements, inventory and analytical techniques can provide significant benefits. Regarding spent fuel, the EC FIRST Nuclides project aimed to determine the chemical form of some relevant elements, mainly ¹⁴ C, ³⁶ Cl and ⁷⁹ Se. Quantification of the activation products ¹⁴ C and ³⁶ Cl that arise from N and Cl impurities in fuel, and understanding the impurity level ranges in fuels from different suppliers is still an open question identified at the end of the project. <i>EC Projects: FIRST Nuclides</i>						
Implementation Driven			\checkmark			
Transfer of Knowledge to LA	Ps		\checkmark			
Level of Common Interest						

Г

1.1.2 Waste Characterisation Techniques

	1
Background Sufficient knowledge of the waste characteristics is necessary to define suitable treatment, conditioning and disposal strategies. Often, countries need to manage historical radioactive waste without adequate information about their origin and radionuclide content and in some cases wastestreams have been mixed. The problem may be more pronounced in countries having small amounts of radioactive waste which may not have	Research Needs/Driver • The development of accurate and cost-effective technologies for the radiological characterization and segregation of small amounts of raw historical radioactive waste is needed in several countries,
the necessary funds to characterise the waste using available technology. Therefore, there is a need for developing reliable and affordable technologies for cost-effective characterization and segregation of historical preconditioned radioactive waste. Non-destructive assay techniques could enable the rapid characterisation of wastes prior to packaging, during storage, prior to dispatch to a GDF, or upon receipt at a GDF. These techniques could allow characterization of the gamma- radionuclide content, fissile content, physical and thermal characteristics of waste packages. The EC CHANCE project "CHAracterization of conditioned NuClear waste for its safe disposal in Europe" has been selected for funding within the	• Rapid assay techniques which maintain waste package integrity and containment have the potential to provide quality assurance of packages being stored, transported or received at a GDF. Such techniques would not expose personnel to additional dose, whilst providing reassurance that the waste inventory is as stated in the
Euratom call H2020 2016-2017. The CHANCE project will start in 2017 for a 4-year period. It aims to address the specific issue of the characterization of conditioned radioactive wastes through non-destructive assay. CHANCE objectives are to: 1/establish at the European level a comprehensive understanding of current conditioned radioactive waste characterization and quality control schemes. 2/develop, test and validate techniques already identified that can improve the characterization of conditioned radioactive waste. <i>EC Projects: CHANCE</i>	package description. Research Objectives To develop accurate and cost-effective technologies for the radiological characterization and segregation of small amounts of raw historical radioactive waste is needed in several countries, To develop and demonstrate enhanced or novel non-destructive assay techniques appropriate to radioactive waste package quality assurance measurements.
Implementation Driven	✓
Transfer of Knowledge to LAPs	
Loval of Common Interest	

Implementation Driven				\checkmark
Transfer of Knowledge to LA	Ps			
Level of Common Interest				
High	~	Medium	Low	

1.1.3 Non-mature and Problematic Waste Conditioning							
Background Significant progress has been made in the development of robust disposal concepts for spent fuel, high-level wastes and many intermediate and low- level wastes. There is an		Research Needs/Driver The decommissioning of nuclear a conditioning / packaging of a wid Collaborative research and develo between waste producers would e wasteforms appropriate for safe g	e ran opme mable	ge of problematic wastes. nt and transfer of knowled e the cost-effective develop	ge		
level wastes. There is an opportunity for the identification of good practice between Member States where disposal concepts have been developed, however there is also a need to develop novel conditioning technologies for problematic decommissioning wastes.		Research Objectives To share best practice in waste pro- conditioning / packaging approach Wastes that may require considera exchange resins (which form expa- pond-sludges, highly tritiated was sealed sources, irradiated neutron (containing beryllium), nuclear fur plutonium residues, radium contained bitumen sludges (swelling due to	hes fation ansiv stes, l refle sion	or problematic wastes include: sulphonate-based e phases in cement), high- high iodine-129 containing ectors and neutron sources wastes, contaminated mer- g wastes from non-nuclear	l ion- uranic g wastes, cury,		
Implementation Driven					✓		
Transfer of Knowledge to LAPs v					\checkmark		
Level of Common Interest				1			
High	High 🖌 Medium Low						

1.1.4 Radionucli	de l	Release from Wasteforms	othe	r than Spent Fuel	
Background The formulation of a wasteform provides the first barrier in a GDF's multi-barrier system of isolation and containment.	T co ai	Research Needs/Driver to improve the robustness of the ponfidence in the understanding o and future wasteforms.			
 isolation and containment. Improved understanding of the radionuclide and chemical species release kinetics would reduce uncertainty in the source-term of key species in performance assessments and would enhance confidence in GDF post-closure safety cases. The EC CAST project (2013- March 2018) will provide understanding of the ¹⁴C source term for graphite, activated metals (Zircaloy and stainless steel) and ionic exchange resins. <i>EC Projects: CAST</i> Research Objectives Potential objectives include studies to identify the radionuclide rel mechanisms and associated kinetics for the following wastes: Vitrified waste (ILW and HLW) - release processes include: fracturing, hydration under unsaturated conditions, interaction surrounding materials (carbon steel, corrosion products, concre (including low-pH concretes), clay, etc.), resumption of alterat influence of irradiation on residual alteration rate, influence of composition, congruency between glass alteration and radionu release; Metallic wastes: corrosion of reactive metals (aluminium and magnesium alloys, metallic uranium), influence of polymer degradation on corrosion rate, galvanic corrosion, influence of chemistry (chlorides, nitrates, sulphur species, etc.), biocorrosis High organic content wastes, including bitumen sludges and co plutonium contaminated material; Graphite: release of ¹⁴C (influence of surface to volume ratio, thistory and pH); 					n with rete tion, f uclide f water sion; cemented thermal
Implementation Driven					\checkmark
Transfer of Knowledge to LAP	S				\checkmark
Level of Common Interest					
High	\checkmark	Medium		Low	

1.1.5 Geopolymers						
Background	Research Needs/Driver					
A geopolymer is an inorganic polymer made of long chains of alumino-silicates. They are formed by the dissolution of silica and alumina reactive powders into a high pH solution, rapidly setting to form an attractive wasteform for radioactive waste management due to their likely radiolytic stability in comparison to organic polymers. Geopolymers have similar chemical and physical properties to cements and are viewed as a "green" alternative to Ordinary Portland Cement as they generate less CO ₂ in production and can utilise industrial by-products such as Kaolin, Blast Furnace Slag (BFS) and Pulverised Fuel Ash (PFA). Due to the initial formulation occurring in a liquid state, these materials display low viscosity prior to polymerisation. As a consequence, they may be used to flood grout large or complex items or to achieve high incorporation rates of sludges and slurries during in-drum mixing. Corrosion inhibitors may be used in geopolymer compositions to improve their performance with regard				the to the potential operational mefits of geopolymers (low acosity, environmentally friendly, wexotherm), there is a need to ther understand their performance in a context of geological disposal. Search Objectives develop an appropriate derstanding of the radiolytic rformance and product stability, s-permeability, resilience to acking from gas production, fire formance and long-term chemical bility (leach performance) in the intext of the disposal environment.		
to H ₂ production.						
Implementation Driven		✓				
Transfer of Knowledge to LAPs						
Level of Common Interest						
High		Medium	\checkmark	Low		

1.1.6 Fourth generation (Gen (IV)) wastes								
Background Research is ongoing into the next generation of nuclear reactors (supported in the EC by the Sustainable Nuclear Energy Technology Platform, the SNETP). The leading reactor designs are the Sodium Fast Reactor (SFR), the Very High Temperature Reactor (VHTR), the Lead Fast Reactor (LFR), the Gas Fast Reactor (GFR), the Super-Critical Water Reactor (SCWR), and the Molten Salt Reactor (MSR). Although the quantity of radioactive waste generated by these technologies will be less than from previous generations, its properties are likely to differ from current wastes and may present new challenges. <i>EC Project: SNETP</i>		Learnin program detailed disposa public a Resear To undo arising reactors such wa	ag from nmeson l con l is con ch O ersta from s, ide astes syste	Teeds/Driver om previous nuclear power is has demonstrated that early sideration of waste managen critical to the technical viabili otability of the technology. Objectives a fourth generation of nucle entifying challenges to the dis and enabling early feedback em designers in order to mitigisks.	of wast ar sposal	tes		
Implementation Driven					✓			
Transfer of Knowledge to LA	Ps							
Level of Common Interest								
High	Medium			Low		\checkmark		

1.1.6 Fourth generation (Gen (IV)) wastes

1.1.7 Chemotoxic species						
Background Significant focus has been placed on understanding the behaviour of radionuclides in the disposal system and the environment; however, a range of chemical species (e.g. lead, mercury, cadmium, beryllium and organic species) possessing varying degrees of radiotoxicity may also be present in the emplaced wastes. Further understanding is required, particularly in support of the disposal of intermediate and low- level wastes, in order to provide confidence that the environmental and radiological impact of any release of these species will be acceptable.		Research Needs/DriverGreater understanding of the inventory and behaviourof potentially chemotoxic species is necessary in orderto provide confidence in the post-closure safety caseand to enable appropriate packaging of waste materialsarising from current and future decommissioningoperations.Research ObjectivesTo improve understanding of the nature and quantitiesof the likely chemotoxic component of commondecommissioning wastes.To develop improved understanding of the fate ofpotentially chemotoxic species within the engineeredand natural systems of appropriate disposal concepts.				
Implementation Driven 🗸						
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	Medium 🖌 Low					

1.1.8 Novel Radioactive Waste Treatment Techniques								
Background The management of some radioactive waste is still a challenge, while for some others there is the potential for optimisation. This could include operational wastes, by-products from existing processes (e.g. sludges), chemically			Research Needs/Driver Radioactive waste treatment can result in significant volume and/or hazard reduction, and potential cost savings. Such processes can also provide a more stable disposal matrix.					
treatment processes could be applied to a wide range of waste streams and could provide benefits in terms of Waste Acceptance Criteria, safety demonstration, volume and hazard reduction and cost savings. Some technologies could facilitate the management of waste or facilitate volume reduction, e.g. thermal treatment. Some projects have already been carried out on this topic, and some are ongoing, e.g. EC Carbowaste, EC CAST and EC THERAMIN. <i>EC Projects: Carbowaste, CAST, THERAMIN</i>		This topic offers the opportunity to work which has been started by Me States, or will enable further optimic concerning thermal treatments, con interests will have been identified w THERAMIN project, providing scc further development. Similarly, ³⁶ C			mber sation. E.g. mon vithin the pe for l in promising			
Implementation Driven Transfer of Knowledge to LA	Ps						v	
Level of Common Interest								
High		Medium		~		Low		
	1		1					
 1.1.9 Spent-Fuel Evolution Background Internationally, considerable effort has been devoted to the long-term consideration of fission product releases from spent fuel that may become exposed to groundwater once its container is breached. Hence, for light- water reactor fuel there is a good understanding. However, for other types of fuel (doped fuel, high burn-up fuel, MOX), and for the consideration of fuel (doped fuel, high burn-up fuel, MOX), and for the consideration of fuel (ade transport) phase further understanding would be beneficial. It can be desirable to increase the utilization of nuclear fuel to higher burn- up for commercial reasons. The main consequence of higher burn-up for commercial reasons. The main consequence of higher burn-up twe SNF: In PWR, mainly UO₂ samples with burn-up between 50 and 70 GWd.t⁻¹ MOX spent nuclear fuels were initially identified in the scope of the project, but only one MOX sample had been studied during the project. The project focused on IRF measurement in order to establish correlations between the experimental FGR and the IRF of non-gaseous fission products, in particular for ¹²⁹1, ⁷³Se and ¹³⁵Cs. The main conclusion of FIRST Nuclides is that Future R&D should focus on MOX spent nuclear fuel and doped (A/Cr/Gd) spent nuclear fuel in order to precise the influence of dopants on IRF. EC DISCO project aims to assess the influence of geochemistry on spent nuclear fuel dissolution after container failure. It is focused on doped spent nuclear fuel and MOX. EC Projects: SFS, MICADO, FIRST Nuclides, DISCO Implementation Driven 					ong- y gaps n d ing eent uels n in ies. ng nt			
Transfer of Knowledge to LA Level of Common Interest	Ps						\checkmark	
High		Medium		✓		Low		

1.1.10 Spent Fuel Fissile Content						
Background Characterisation of spent nuclea secure storage and disposal. The material – primarily ²³⁹ Pu and ²³ cycles) is necessary to address secontrols. Several methods and te the fissile content of spent fuels. determination of the burnup, the original enrichment of the spent type of fuel. There exist several in use today which primarily me spent fuel.	Qua fuels Rese	earch Objectives roved understanding of the racteristics and behaviour of	-			
Implementation Driven 🗸						
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	Medium		Low	\checkmark		

JOPRAD – D4.4 – Programme Document Issue 2

1.2 Waste Package and Storage Consequences

A waste package (known also as a 'final wasteform') is defined as a unit of conditioned waste ready for the emplacement in a repository; it consists of conditioned waste put in a disposal container and, in some cases, in an overpack.

The waste package is a primary and principal element of the engineered barrier system used to ensure operational and long-term safety throughout the waste management process, starting with its generation (waste conditioning), through transport and storage, until the waste is emplaced in a disposal facility. It should provide containment for a certain period of time, defined in the safety case of a disposal facility.

The spectrum of processes and interactions to be considered in the waste package performance assessment is rather broad and covers waste-container, container - Engineered Barrier System elements, and waste package-host rock mutual interferences, as well as their cumulative effects. When regarding the long-term safety, feasible and well-instrumented integral experiments and associated models may provide for more realistic understanding of near-field system evolution, as well as uncertainty analyses of the long-term waste package evolution.

Radioactive waste may be stored for a considerable period of time prior to disposal. Interim storage of waste can cover a timespan of several decades up to a century or more. Unexpected delays in geological disposal programmes may extend storage periods beyond what was originally anticipated in the national programme. Degradation of the wasteforms and waste packages during these relatively long or extended timespans may have an impact on the safety of the storage facility, as well as on the operational and post-closure safety of the geological disposal facility. This issue is therefore of concern for the evaluation of safety of both the short-term and long-term management of radioactive waste.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The level of common interest for the sub-domains are shown in Figure 6 below.

- 1.2.1 Waste Package Interfaces;
- 1.2.2 Impacts of Extended Storage on Waste Packages;
- 1.2.3 Alternative HLW/Spent Fuel Container Material Development;
- 1.2.4 Re-working of Damaged and Aged Waste Packages.

1.2.1 Waste Package Interfaces						
BackgroundUnderstanding of potential interactions between waste packages (that include the waste form and any container(s) and internal barriers) and other EBS components in the hydrogeochemical conditions of a host geological environment provides an insight into the assessment of the long-term safety of a disposal system. Further understanding of the micro- scale evolution of interfaces between waste packages and associatedResearch Needs/Driver Understanding the interactions occurring at interfaces between waste packages and different barriers in the disposal facility w enhance confidence in the whole EBS and the safety case.Research Objectives Assessment of physical and chemical transformations at the interface between waste packages and different barriers and materials and development of pore-scale models describing th impact on radionuclide migration and fluid transport, potential clogging in bentonite/cement or host-clay/cement interfaces, or increase in porosity in other interfaces under real repository conditions.						
barriers would be beneficial. Implementation Driven				\checkmark		
Transfer of Knowledge to LAPs						
Level of Common Interest	1		1			
High ✓	Medium		Low			
1.2.2 Impacts of Extended Storage on Waste Packages						
--	--	--	--------------	------------------------	--------	--
Background Geological repository developm period, in some Member States period of operations and reversi HLW/SF must also be cooled for (decades) prior to disposal. The durations could have an impact operational and post-closure saf characteristics of the spent fuel over time. In some cases, the ag mean that the cask needs replac investigation of the sealing syst ring materials in terms of their a environmental influences as we mechanical loads, is of particula Monitoring of the state of all was those for ILW) and of the waste conditions may also be required	uding an extended y. Heat generating period of time gnificant storage he transport, as some of the cask may alter g of the casks could Furthermore, the of casks and sealing ng, considering thermal and pportance. packages (including	Identification, characterisation and management of uncertainties related to performance of the final waste package (including the waste form) during prolonged storage (ageing, confinement integrity, handling constraints, wasteform performance) requires further consideration. Research Objectives To understand the performance of the final waste package (including the waste form) during prolonged storage prior to its transport and disposal. The assessment of fuel cladding structural integrity and ageing effects on specific materials of dry casks for spent fuel storage may require further R&D work, e.g. experimental studies, measuring techniques, modelling and numerical simulations.				
Implementation Driven			modening and	i numericai siniulatio	√ √	
Transfer of Knowledge to LA	Ps				✓	
Level of Common Interest				1	·	
High	\checkmark	Medium		Low		

1.2.3 Alternative HLW / Spent-Fuel	Container Material Development
ound	Research Needs/Driver

Background Currently, either combined copper / cast iron or carbon steel are considered for container materials for HLW/SF; stainless steel, ductile cast iron and concrete are typically considered for container materials for ILW disposal. With new waste streams (advanced fuel	Research Needs/Driver To investigate alternative materials to o container/overpack design for HLW/SF maintaining the required level of operat long-term safety.	, whilst	
 cycles) and new host rock systems, alternative container materials for HLW/SF may be considered. Alternative container material may offer the following advantages: To reduce hydrogen production resulting from corrosion of the overpack in anoxic conditions (risk: gas pressure); and To increase the robustness of demonstrating long-term material performance. 	Research Objectives To investigate alternative container materials or coatings, suitable for fulfilling container safety functions in current disposal systems. To identify potential alternative materials for packaging novel wasteforms. To specify alternative container material functions in particular disposal systems and to appropriately characterise their relevant properties, e.g.		
Implementation Driven		\checkmark	
Transfer of Knowledge to LAPs			
Level of Common Interest			

High

Medium

√

Low

1.2.4 Re-working of Damaged and Aged Waste Packages							
Background During handling, transport, and prol storage waste packages might be dat by incidents or due to the degradatic container materials (corrosion). Was be stored for a significant period of storage facilities or in the disposal fa prior to its final emplacement. These significant storage durations could h impact on transport, operational safe the post-closure safety as some characteristics of the wasteform and waste packages may alter over time. Such packages must be re-packed on reworked prior to their disposal to m the potential for violation of safety requirements. The identification of of to determine whether defected wastef need to be re-worked and of what ty working is necessary is therefore of	onged naged n of te can ime in ucility ave an ty and of the even inimize riteria forms pe of re- interest.	damaged was good practice programmes t • Determine the of a wastefor overpack or a	Sorma ste pa e fror to les e ciru m (e apply formo es wi nces at pa eolog best j mine	th respect to minimi- and addressing wast ckages have become gical disposal facility practices on the iden whether re-processi	transfer of ember State imes; re-working to the wast re-working ILW, HLW sing e acceptance damaged '. tification an ng of aged	e) is 7	
Implementation Driven							
Transfer of Knowledge to LAPs					\checkmark		
Level of Common Interest							
High		Medium		Low		\checkmark	

1.3 Near-field and Engineered Barrier System

The choice of buffer and backfilling materials is partly dependent on the chosen disposal concept. Buffer and backfilling have important safety functions in some disposal concepts, depending on the disposal concept under consideration and the geological environment of the site. Cementitious materials are extensively planned to be used as disposal structures (buffer, plugs). Further understanding of the thermal, hydro and mechanical (THM) behaviour of concrete materials, taking into account their chemical degradation, would be beneficial. This is especially the case for low pH cements. Bentonite is intended for use as a buffer around high-level waste canisters and also as a seal. Clay-based materials (i.e. excavated rocks with additives) may also be used to backfill galleries in the disposal facility. Despite on-going studies, the whole supply chain for bentonite buffer materials needs more RD&D work.

In evaporite environments (e.g. halite) RD&D may also be required in order to maintain the integrity of the near field (and far field) via appropriate engineering of backfill regimes and seals.

The coupled mechanical/chemical evolutions at the interfaces between the different materials (glass/iron/clay, cement/bentonite, cement/metal, bentonite/metal) and between these materials and the host rock (iron/clay interactions, alkaline perturbation) are a topic of strong interest to assess the global evolution of the near field. The difference between relatively 'short-term' interactions (e.g. resaturation) versus 'long-term' interactions (e.g. development of gas pressure, cement degradation etc.) occurring at these interfaces is important. Another perturbation which has to be addressed is the influence of gases and microbes on geochemistry. These studies need to be supported by mock-ups (at different scales) and in-situ experiments to verify that the components will behave as expected and that all the relevant processes have been taken into account, but also to demonstrate the ability to build complex components (buffer, plugs and seals).

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The level of common interest for the sub-domains are shown in Figure 7 below.

- 1.3.1 Bentonite and Other Clay Based Components;
- 1.3.2 Microbial Influence on Gas Generation;
- 1.3.3 Cementitious Component Behaviour;
- 1.3.4 Low pH Cements;
- 1.3.5 Metallic & Cementitious Chemical Perturbations;
- 1.3.6 Salt Backfill;
- 1.3.7 HLW/ILW Near-field Evolution;
- 1.3.8 Co-disposal Interactions.

1.3.1 Bentonite and other Clay Based Components

Background

Many studies have been performed to characterise the behaviour of swelling clay, including bentonites. The main requirements are on swelling capacity to fill the technological voids and on low hydraulic conductivity. This implies a good understanding of physical processes that occur throughout the lifecycle of the bentonite component (EBS, sealing or backfill) and a capacity to perform robust predictive simulations. Studies have concerned several types of bentonites in several physical forms, such as compacted blocks or pellet mixtures. Investigations of the behaviour of bentonites under particular conditions associated with their use in an industrial context need to be pursued. Especially, the role of heterogeneities due to installation or to external conditions such as local water inflow or temperatures in excess of 150°C. Such phenomena may lead to changes in the mineralogical composition of the bentonite, particularly in its clay content. These changes may affect the component as a whole (e.g. illitization) or an interface zone with the perturbation source (e.g. alkaline transformation leading to serpentinization). Consequently, such changes can lead to evolution of transport and chemical properties, or even in mechanical behaviour changes. EC Projects: BENIPA, BELBaR

Research Needs/Driver

Further studies of bentonite and clay based materials to assess the role of: variations of properties arising from barrier installation, hydration history, elevated temperatures and chemical influences on long-term evolution behaviour.

Research Objectives

To characterise bentonite evolution under specific conditions to provide data on hydromechanical, thermal and chemical behaviour. To provide guidance on the use of clay materials depending on their origin or mineralogy.

To enhance understanding of post-closure safety considerations by extensive characterisation of the different phenomena, e.g. thermal evolution or interactions with metallic or cementitious components (alkaline perturbation, ion-exchanger modification) or with the host rock.

Implementation Driven				\checkmark
Transfer of Knowledge to LA	Ps			
Level of Common Interest				
High	~	Medium	Low	

1.3.2 Microbial Influence on Gas Generation						
1.3.2 Microbial In Background After O ₂ disappearance in the near field, anoxic corrosion of steel is expected to produce hydrogen gas. Simultaneously, microbes may reduce oxidized species like sulfate and produce other gases like H ₂ S, which may react with metals to form sulphides. The formation of methane depends on the presence, transport and reactivity of sulfate. In general, the influence of microbial processes is addressed via bounding assumptions in disposal facility safety cases. <i>EC Projects: MIND</i>		 Research Needs/Driver Where a safety case requirement is identified for improved mechanistic understanding, rather than bounding assumptions, it may be necessary to: Quantify kinetics of microbial catalysis of both gas consumption or gas production reactions, and the competition between them. Improve the topological description of rock surfaces interacting with gases. Research Objectives To produce relevant chemical and microbial data from in situ experiments in realistic / genuine near-field conditions in order to better quantify the consequence of microbial processes. 				
*	D					
Transfer of Knowledge to LA Level of Common Interest	Ps					
Level of Common Interest						
High	\checkmark	Medium Low				

1.3.3 Cementitious Component Behaviour					
Background Cementitious materials are planned to be used as waste packages and confinement matrices, as well as disposal structures. Their physical behaviour, especially during the		Research Needs/Driver It is important to increase confidence in simulations by reducing uncertainties in input data and understanding of key processes, taking into account specific conditions for waste disposal (temperature, radiation, chemical composition, etc.).			
operational phase and THM-tran periods, is strongly influenced b boundary conditions, controlled both the disposal system and the rock (water saturation, temperat etc.). To assess the evolution of performance of the concrete components these studies have b extended to a longer time-period considering various operating conditions. Early age behaviour (coupled ch and mechanical behaviour) of co is important to determine "initia properties" and to be able to mo long-term behaviour of a structu <i>EC Projects: CEBAMA</i>	 Research Objectives To quantify, according to various cement / concrete types, the evolution of the chemical and physical properties (of sound and degraded materials) to improve long-term modelling and assessments. To reduce the uncertainties of the physical evolution during the THM-transients involving the wastes and the geological mediur Priorities should be given to: Hydromechanical (shrinkage, creep) behaviour of concrete (including the effect of temperature and relative humidity variations). Passive and active corrosion and damaging consequences (in oxic and anoxic conditions). To support the design process and dimensioning, including raw material choices and their impact on the initial properties. To explore the effects of waste degradation (resulting in sulfates ammonium salts, organic acids, etc.). on cementitious component. 				
Implementation Driven					✓
Transfer of Knowledge to LA Level of Common Interest	Ps				~
High	\checkmark	Medium		Low	

1.3.4 Low pH Cements					
	e nuclea ive been nageme	necessary to consolidate and expand on existing understanding of low pH, including their composition, impact of radionuclide migration and practical implementation.			
operators, although no background exists in the civil engineering context. Most investigations deal with formulation vs initial expectations/requirements. The main requirements are on short-term chemical evolution to achieve the "low pH" property as fast as possible. This chemical property is important so as not to lead to long-term chemical interactions with clay materials which can lead to degraded safety functions (swelling clay in plugs and seals and/or clay host rock). There is also little information on the corrosion of steel rebar in low pH cement environments. <i>EC Projects: CEBAMA</i>		 of cements. Providing understanding of the reinforcement corrosion process in low pH concrete if reinforced concrete is used. Providing understanding of low-pH cements evolution (pH, mineralogy) under high temperatures (up to 90 °C), at interfaces with carbon steel, and taking into account groundwater chemistry. 			
Implementation Driven	Da	✓			
Transfer of Knowledge to LA Level of Common Interest	[5				
High		Medium 🗸 Low			

1.3.5 Metallic & Cementitious Chemical Perturbations						
Background The host rock in the near field of disposal system may be influence the degradation of metallic and cementitious materials. These materials may be used as structur materials or waste package components. The characterisation the phenomena is of interest to support the performance assessm and the safety assessment.	ed by al	phenomena (i.e. metal corrosion cement alteration) on EBS comp evolution (e.g. alkaline perturbat models.Research Objectives To improve the geochemical mo through numerical and experime	Development of further understanding of the impacts of different phenomena (i.e. metal corrosion / secondary phase formation and cement alteration) on EBS components and near-field chemical evolution (e.g. alkaline perturbation on host rock) via improved models.			
Implementation Driven	Implementation Driven					
Transfer of Knowledge to LAPs						
Level of Common Interest			<u>.</u>			
High		Medium	Low			

© JOPRAD

	1.3.6 Salt Backfill				
Background A disposal facility for radioactive w e.g. the Waste Isolation Pilot Plant	Research Needs/D To further understa salt backfills.		ıt		
backfill may be adopted to close disposal areas. The crushed salt backfill isolates the waste containers from any porewater in the rock and would compact and creep and eventually converge with the tunnel walls as the salt host rock creeps and provides further sealing of the waste with a complete barrier of low permeability salt. In thinner salt deposits the backfill will reduce the required extent of creep, mitigating the risk of propagated damage through the salt deposit. <i>EC Projects: BAMBUS II</i>			Research Objectives To understand the long-term behaviour and properties of a salt backfill, including influences of pressure and temperature on behaviour.		
Implementation Driven					
Transfer of Knowledge to LAPs					
Level of Common Interest					_
High	Medium		Low		✓

1.3	1.3.7 HLW / ILW Near-field Evolution							
Background Various near-field materials (iron steel, cementitious or bentonitic g considered for placement between canisters and clay host rock. Man systems have been studied to data mock-ups to in situ tests, but only systems have been deeply investi (experimentally and by simulatio reactive solids near the glass sign number of potential processes: so dissolution / precipitation of new coprecipitation, incorporation of solution formation, local changes composition, local porosity clogg transport properties of aqueous sp reactions, etc. It has been shown that transport of the micron to millimetre scale is in most of the glass-nearfield-mater investigated. Most of the studies are devoted to vitrified waste disposal cells but addresses the evolution of the near intermediate wastes, such as orga bitumen), metallic waste, etc.	grouts, etc.) have been in glass-containing by complex coupled e, from laboratory y simple coupled gated and understood in). The presence of ificantly increases the reption reactions, phases, solid phases and solid in pH or in solution fing changing the becies, redox of reactive species at rate controlling in ials systems already to the evolution of this sub-domain also ar field for	HLW / I dependin transpor Organic Performance system relice temporal events the porous relice temporal events the porous relice temporal events the porous relice temporal events the porous relice to improve between rea alteration (of radiolysis/h materials (effor vitrified the behavio improve mode minimised to the second second second temporal events (of the second sec	haterit LW ng bot of r acid e ass es on voluti medi Dbje e und active e.g. c ydro y.g. s ^s d was ur of odell unce	ials are expected to react with: glass, more or less rapidly, oth on thermodynamics and on the reactive species, s, salts released by wastes. sessment of such a near-field the description of the spatial and ion of transformations affecting a and degrading materials. ctives derstanding of coupled interactions e transport models, the waste corrosion of glass, polymer olysis, etc.) and near-field teel, concrete, etc.). ste, understanding and predicting f such complex systems could help ing of the reference case with rtainties and later, optimize the ential gain of orders of magnitude				
Implementation Driven Transfer of Knowledge to LAP	<u>s</u>			×				
Level of Common Interest								
High	Medium	L	✓	Low				

1.3.8 Co-disposal Interactions							
 Background Co-disposal of radioactive waste o be possible in some geological dist with different properties may occur of (e.g. spent fuel, vitrified glass, e such as long-lived alpha containing to a situation where dissolution plu national programmes, (co-) dispos waste is foreseen for a single geolog R&D is to: identify waste types and comp problematic for the integrity at assess the potential impact on propose remedial actions such as in respective disposal concepts, or ch order to avoid the potential for pro 	 geological facilities by enabling disposal of wastes with a variety of compositions and properties. Research Objectives To identify R&D or knowledge transfer in support of optimization of disposal of wastes of different characteristic composition and properties in a single geological disposal facility 						
Transfer of Knowledge to LAPs				\checkmark			
Level of Common Interest							
High		Medium		Low 🗸			

1.4 Gas Generation and Transport

Gases will be generated during transport, operations and after closure of a geological disposal facility. It is necessary to understand the rates of generation of these gases during all phases of a geological disposal facility, their effect on the Engineered Barrier System (EBS) their migration from the EBS after closure (and any potential effects on the host rock) and their effect on solute migration (partial desaturation), in order to demonstrate safety during transport to a geological disposal and throughout subsequent phases of the geological disposal facility.

The properties of the host rock and geosphere control the migration of gas from a facility and thus the key issues to be addressed depend upon the geological environment and the associated disposal concept for the facility. In a low permeability host rock, such as the Opalinus Clay or an evaporite, there is the possibility that gas could be generated at a faster rate than it can be removed without inducing fracturing in the host rock. Thus, depending on the likely rates of bulk gas generation, the potential for significant over-pressurisation may need to be considered for these concepts. For a GDF in a fractured higher strength rock it is likely that transport of gas through the host rock would be sufficient to prevent significant over-pressurisation of the EBS. In several concepts, the potential for migration of free gas containing gaseous radionuclides to the biosphere is an important issue.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The level of common interest for the sub-domains are shown in Figure 8 below.

- 1.4.1 Gas Migration though the Excavation Disturbed Zone/EBS and Far-Field;
- 1.4.2 Gas Generation Processes;
- 1.4.3 Gas Transients;
- 1.4.4 Gas Reactivity.

1.4.1 Gas Migration through the Excavation Disturbed Zone/EBS and Far-Field							
Background In a low permeability host rock bulk gases, if formed in sufficient quantity, would migrate from the EBS as a free gas phase. Migration of gas within the EBS and	Bu the a f EI ide	esearch Needs/Driver alk gas migrating out of waste packa e Excavation Disturbed Zone (EDZ) ree gas-phase to migrate into the fan DZ is therefore of importance in clay entified concerning upscaling from l RLs to the repository level.	i) m ar fi ay fo	ay provide an impor eld. Gas migration the ormations and needs	tant route for hrough the have been		
through the rocks surrounding the GDF will depend on the geological disposal concept and the individual site(s) being considered. The international FORGE (Fate Of Repository Gases) project investigated gas migration issues of relevance to GDF performance assessment. <i>EC Projects: GASNET,</i> <i>FORGE</i>	To roo mi ga ma ca ma an To an	URLs to the repository level.Research ObjectivesTo increase understanding of gas migration and reaction in different hostrocks, in particular to further understanding of gas generation andmigration through the EBS and far field, including the fate of reactivegases (including upscaling from laboratory / URL studies) and themechanical behaviour of host rock. This may include specific work oncarbon-14 migration, understanding gas flow in engineered barriermaterials at elevated temperatures, and gas interactions between packagesand backfill.To consider the impact of engineering design on migration from the EBSand migration through the EDZ.To refine models of gas migration, including the treatment of uncertaintyarising from the nature of the geological environment.					
Implementation Driven					\checkmark		
Transfer of Knowledge to LA	Ps						
Level of Common Interest							
High	\checkmark	Medium		Low			

Gas Generation and Transport

1.4.2 Ga	as Generation Process	es	
Background The formation of gases from processes occurring in many waste packages, e.g. corrosion of metals in the waste or the container, or from the radiolysis of water, is unavoidable. There is a general	radioactive trace gases an waste packages. Research Objectives	g of the generation and release of d bulk gases from wasteforms an	
consensus that the key bulk gas generation processes applicable to a GDF are the corrosion of metals, microbial action on organic materials and radiolysis (organic materials, concrete, salts, etc.). The impact of gases on the safety case is either associated with the production of non-radioactive (bulk) gases or the radiological impacts of (trace) gases containing radionuclides such as tritium, ¹⁴ C and ²²² Ra. Both the rate at which gases containing ¹⁴ C might be produced from the waste (currently investigated by the EC funded CAST Project), and the radiological consequences associated with ¹⁴ C labelled species migrating to the biosphere, are important considerations. <i>EC Projects: CAST</i>	 development and dem from the EC CAST pp To increase understan gases (H₂, CO₂, CH₄, from radiolysis of pol temperature. To increase understan hydrogen resulting fro (aluminium, magnesin alkaline solutions, inf complexing species, e To further understand bul generation from HLW and on the disposal system. Sp potential for formation of such as hydrogen, the rad 	nding of the generation and releas HCl, CO, HF, HCN, etc.) resulting hymers, including the influence of adding of the generation and releas for corrosion, e.g. reactive metals um), reaction of beryllium in fluence of organic acids and etc. k gas generation from ILW, and a d spent fuel, and potential impact pecific work may be focused on t flammable gas mixtures for gase iotoxicity hazard from the generat the possible hazard from the	ing f se of s gas ts the es
Implementation Driven		✓ ×	
Transfer of Knowledge to LAPs			
Level of Common Interest	-		
High	Medium	Low	

		1.4.3 Gas Tra	nsients				
Background Water (including solutes) and garesaturation phase is complex dubetween hydraulic and other prowith thermal ones is already imptwo-phase flow numerical codes large scales. Concerning mechanthe high complexity of a full cours moment its use to a restricted vois simplified version of such a cours a full scale two-phase flow evaluation.	Increase two-phas disposal s coupling Research Develop numerica	the d e flo scale with n Ob and i al coo	mplement in two-pha les new models able tion of numerical eva	y be used at yel of y. ase flow to increase			
Implementation Driven						✓	
Transfer of Knowledge to LAI	Ps						
Level of Common Interest					1		
High		Medium		\checkmark	Low		

		1.4.4 Gas Rea	ctivity			
Background			Research	Nee	eds/Driver	
Gases generated in a repository ways with the EBS and host roc migrate. Beside more physical p and dissolution, gases may und microbially mediated reactions environment. For instance, H2 i	reactivity i interaction characteris	in a 1s m stics	implications for safet GDF are manifold as ay alter the physical of the migrating gas es of the media where	s these and chemical as well as of		
which could contribute to maintain or to restore strongly			Research Objectives			
reducing conditions. However,		0.	To increase understanding of gas reactivity in			
clay components and iron-conta		e	EBS and host rocks in repository conditions and			
also affect the stability of clay r			its potential impacts on geochemistry, safety-			
of metallic barriers. H2 is also c		ē	relevant pr	roce	sses and radionuclide	e migration.
substrates for microbial life in c	-					
environments and can fuel bacte	erial	activity.				
Implementation Driven						\checkmark
Transfer of Knowledge to LA	Ps					
Level of Common Interest						
High	\checkmark	Medium			Low	

1.5 Radionuclide and Chemical Species Migration

After isolation of radioactive waste in deep geological formations, only by slow migration in groundwater and to a very small degree by a gaseous pathway, can radionuclides enter the biosphere, a process which typically takes many hundreds of thousands of years. The rate of radionuclide migration depends not only on the distance of the repository from the biosphere and the rate of groundwater flow, but radionuclide migration is further retarded by the interaction of dissolved radionuclides with the diverse surfaces of wasteform and container degradation products, backfill materials, minerals and organic matter. Retention on solid surfaces may be reduced by the formation of soluble solution complexes and organic or inorganic colloids. The migration process is different for each type of radionuclide; anions interact only slightly with typical negatively-charged surfaces, but in porous media ion-exclusion may reduce the speed of migration. For cations, retention increases with cation charge; monovalent alkali ions are much less retained than tetravalent actinides. The geochemical environment strongly influences radionuclide migration; e.g. in reducing geochemical environments actinides are almost immobile. Radionuclide migration is also influenced by organic matter, micro-organisms and gases present along the transport path.

There has been research on the various topics of radionuclide migration for more than 30 years, often funded by the European Commission. This has included both detailed mechanistic and applied studies. The present programme focuses on remaining uncertainties.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 9 below.

- 1.5.1 Chemical Thermodynamics;
- 1.5.2 Sorption, Site Competition, Speciation and Transport;
- 1.5.3 Incorporation of Radionuclides in Solid Phases;
- 1.5.4 Transport of Strongly Sorbing Radionuclides;
- 1.5.5 Effects of Microbial Perturbations on Radionuclide Migration;
- 1.5.6 Organic-Radionuclide Migration;
- 1.5.7 Temperature Influence on Radionuclide Migration;
- 1.5.8 Colloid Influence on Radionuclide Migration;
- 1.5.9 Redox Influence on Radionuclide Migration;

- 1.5.10 Ligand-Influenced Transport Modelling;
- 1.5.11 Transport of Volatile Radionuclides.

Figure 9: Level of Common Interest for Radionuclide and Chemical Species Migration Sub-Domains.

1.5.1 Chemical Thermodynamics

Background Assessment of the long-term performance of the disposal system relies on the understanding and quantification of the thermodynamic driving forces for degradation of waste matrices and mobilization and retention of radionuclides. High quality thermodynamic data are generally usable beyond a given disposal configuration and if one is able to base long-term performance assessments largely on such data, one can create high credibility and confidence. This can be linked to the NEA- thermodynamic database (TDB) approach which provides high quality assurance and clear identification of priorities.	Research Needs/Driver To further develop transparent and quality as thermodynamic databases for use in performa assessments. Research Objectives To determine thermodynamic data for key r principal elements of the disposal system phases and solid solutions, filling gaps environments and using natural analogues to kinetic constraints (metastability). Thermodynamic data may be required in ord predictions at higher temperatures and sal underpin models considering cement pha conditions, redox, etc. Improved treatment of uncertainty in thermodynamic	ance radionuclides, n, secondary for specific p assess slow der to validate inity, and to ses, alkaline
Implementation Driven		✓
Transfer of Knowledge to LAPs		
Level of Common Interest		

High	~	Medium	Low	

1.5.2 Sorption, S	ite Competition, Speci	ation	& Transport	
Background Radionuclide transport in groundwater in pore water of porous media is the principal process challenging the long- term isolation of radionuclides in deep geological formations. The rate of transport is reduced strongly (1) by retention of radionuclides on sorption sites on the surface of minerals and engineered barrier materials and their alteration products and, (2) in nano- porous media like clays and also by anion exclusion. The extent of sorption depends on the radionuclide, its speciation in solution, the geochemical boundary conditions and on the nature the solid phases. Competition between the main elements for sorption sites mare reduce the number of sites available for radionuclides.	complexation) and couvarious media. Research Objectives To represent heterogenclay-rock, crystalline respectation, sorption (contransport models consisted properties at all scales rock anisotropy/heterory To develop multi-spection based materials with a previously developed responsed materials with a previously developed responsed material up-scaling structure to further develop behaviour of radionuction further develop for the specific terms of the specific terms of the spectific terms of the specific terms of terms of the specific terms of te	e sorpti- ipled el neous n oocks, b onsider idering . This v geneity ies read level o in clay- e done b strategy models elides in	nemistry/transport me nedia (cement-based entonite, corrosion p ing competitive effect the variability of bar vill elucidate the influ v on radionuclide mig ctive transport model of performance equiva- rich systems (EC Ca based on an experime de to take into n complex systems (materials, roducts) in cts) and rier uence of 3D- gration. s for cement- alent to those tClay ental and account the including the
<i>EC Projects: CatClay</i> Implementation Driven				\checkmark
Transfer of Knowledge to LAPs				
Level of Common Interest				<u> </u>
High	Medium	\checkmark	Low	

1.5.3 Inco	1.5.3 Incorporation of Radionuclides in Solid Phases							
Background In contrast to radionuclide retent sorption, the incorporation of radionuclides in solid phases in w matrices and along migration par provides a different and very pow retention mechanism. This is bed incorporated radionuclides are m necessarily released upon contact solid with groundwater. This lea partially irreversible entrapment strong safety factor for the repos system. Important solids in this of are spent fuel and glass, and their alteration products, as well as sho	waste ths, werful cause ot et of the ds to as a sitory context ir owly	Research Needs/Driver To quantify long term em radionuclides (e.g. ¹⁴ C an bearing phases) and chara mechanism. Research Objectives Mechanisms for irreversi characterized and modell diffusion or recrystallizat process. Suitable emphas both thermodynamics and Experiments to character reactions, informing reac The impact of changes in material dissolution and g	ble e ed. T tion b is sho d kind ise th tive t	as carbonates and ⁷⁹ S ize the governing ent ntrapment need to be ypical mechanisms a by a dissolution/preci- ould be placed on un- etics. he reversibility of inco- ransport models. tant concentrations b	e in sulphur- rapment are by pitation derstanding orporation y host			
forming and dissolving mineral j the far-field.	phases in	should be appropriately r						
Implementation Driven					\checkmark			
Transfer of Knowledge to LAF	Ps							
Level of Common Interest								
High		Medium	\checkmark	Low				

1.5.4 Transport of Strongly Sorbing Radionuclides

Background

Strongly sorbing radionuclides only move a very short distance over geological time periods. Typical strongly sorbing nuclides are tri-and tetravalent actinides and tetravalent technetium. The actual migration distance is difficult to assess and requires sophisticated solid-state analytical techniques. Migration distances can increase by complexation with organic ligands originating from the waste, even though retention remains very strong. In porous or fractured rock, faster transport is sometimes observed. Detailed processes are dealt with in existing projects like EC SKIN. Other projects, like CatClay have finished, but future work is still necessary.

EC Projects: SKIN, CatClay

Research Needs/Driver

Even if strongly sorbing radionuclides in a repository constitute only a small risk to the environment, more understanding is desirable to increase confidence, exploring for instance the chemical degradation of the cement-based materials, the presence of organic molecules, saline groundwaters, etc.).

Research Objectives

To determine how to better:

- Represent heterogeneous media (cement-based materials, clay-rock, crystalline rocks, bentonite, corrosion products, etc).
- Simulate anoxic environmental conditions.
- Predict the transport of strongly sorbing nuclides.
- Characterize the retention of redox sensitive radionuclides or toxic elements.

Research Needs/Driver

Implementation Driven						
Transfer of Knowledge to LA	Ps					
Level of Common Interest						
High		Ν	Aedium	~	Low	

1.5.5 Effects of Microbial Perturbations on Radionuclide Migration

Background

Dackground			Itescal cli 1	iccu	5/DIIVCI			
Microbes and fungal activity ca	ın inf	luence	-		tions for predictions of microbial			
radionuclide migration by biose	orptic	on, metabolic	activity may be required for performance					
processes, formation of biofilm	s, etc	e. By release of			antitative information on microbe			
organic molecules (siderophore	nicrobes can			ergy and carbon source availability				
produce soluble radionuclide co					aste specific) would be beneficial			
activity can also influence the c			in this cont					
and in particular the redox state			Research (
Nitrates may influence the fate					nicrobes on the chemical			
absence of microorganisms, the					eds to be considered as a function			
sulfate to sulphide is, e.g. extreme	mely	slow, while it is			stand and quantify the fate and			
fast in presence of sulfate-reduc			-	nicro	bial activity on radionuclide			
lot of sulfate in typical repositor	ry en	vironments and	migration.					
sulphide formation may strongl	y inf	luence the			he influence of gas on			
geochemical near-field environ	ment	. The geochemical			nd microbial activity in the near-			
environment and the presence of	of gas	ses (H ₂ , others) will			g void spaces, release of			
strongly influence microbial po	pulat	tions and activities.			nic ligands, nitrates, sulphides, and			
Based on previous and ongoing	wor	k (e.g. EC MIND)			ss the impact on barrier			
the role of microbes is typically	add	ressed in	performance and radionuclide migration.					
implementers' safety cases by b	ooun	ding assumptions.	It would be beneficial to develop methods to					
EC Projects: MIND			upscale from	m ph	enomenological descriptions to			
-			mechanistic	c mo	dels.			
Implementation Driven								
Transfer of Knowledge to LA	Ps							
Level of Common Interest								
High	~	Medium			Low			
111511	1	i i i cui u i i	•		LUII			

1.5	grat	tion			
Background		Research	Nee	ds/Driver	
It is likely that a variety of organi	c substances will be	Further rea	searc	ch is required to enha	nce
part of any disposal concept, eithe	er from the waste	understand	ding	of the role of organic	es (either
inventory, or as superplasticiser for	or concrete structures,	naturally o	occu	rring or as introduced	l in the
or from pre-existing organic matter in the geological			nd th	eir influence on radio	onuclide
formation. It is possible to conside		migration.			
substances, likely to be present an		Research	Obj	ectives	
mobility and radionuclide comple		Studies ma	ay ir	clude:	
situ transport experiments and mo		(i) the nature of the organic molecules generated			
very organic-rich waste type is bit		by the organic waste or admixture degradation,			
matter can influence radionuclide		(ii) their stability with time, (iii) their effects on			
soluble or colloidal complexes wi		radionuclide migration (speciation, solubility,			
would otherwise be insoluble, or l				ision as a complex	
sites. Hyperalkaline water and ent				uclide), (iv) the effect	
compounds arising from cementit		of organic molecules, (v) the nature and release			
increase the mobility of organic m				compounds resulting	
small organic molecules can be tra	ansported, larger ones			olysis and hydrolysis,	
are filtered in clay pores.		implemen	tatio	n in a reactive transfe	er model.
Implementation Driven					\checkmark
Transfer of Knowledge to LAPs					
Level of Common Interest					
High	Medium		\checkmark	Low	

1.5.7 Temperat	ure Influence on Radio	nuclid	le Migration	
Background Elevated temperature may change the migration behaviour of radionuclides by changing sorption constants, by changing diffusion coefficients in	11 1 1	a realist	y studying temperature effects o ic near field environment and a geochemical model.	'n
porous media or by influencing the stability of organic matter or of minerals. There are only a few studies on the effect of temperature on radionuclide migration and a more robust understanding could be provided by confirmatory studies of sorption constants at a few selected temperatures.	radionuclides (K _d or surface of temperature. To develop a better underst function of temperature. To consider the effect of ter	e compl tanding mperatu	Iding of sorption constants for lexation constants) as a function of groundwater composition as ure on potential transformations on and any associated impact on	a of
Implementation Driven				
Transfer of Knowledge to LAPs				
Level of Common Interest				
High	Medium	\checkmark	Low	

1.5.8 Colloid Influence on Radionuclide Migration

8					
Background	Needs/Driver				
Colloids can be organic or inorga	anic. Their size is typically	To increase confidence in post-closure safety			
smaller than 0.5 μ m so that they	do not settle during		nproved understandin		
groundwater transport. In a repos	sitory, colloids may pre-	of colloid	generation and transp	oort for	
exist in the groundwater system,	or may be generated by	different h	ost rocks and disposa	ıl.	
interaction of groundwater with	repository components.	Research	Objectives		
Important examples are colloids		To conduc	t experiments and mo	odel	
glacial melt water with bentonite		developme	ent for colloid genera	tion and	
clay backfills are filters against c		transport; colloids may arise from bentonite			
well documented. If colloids are		erosion, organic species degradation, cement			
contribute to radionuclide migrat		material degradation, etc).			
transportable, colloidal transport		To investigate transport parameters for			
radionuclide migration, especiall	y for radionuclides which	inorganic colloids or radionuclide/organic			
are sparingly soluble and strongl	y sorbed.	complexes.			
EC Projects: BELBAR					
Implementation Driven				\checkmark	
Transfer of Knowledge to LAP					
Level of Common Interest					
High	Medium	✓	Low		

1.5.9 Redox influence on Radionuclide Migration							
Background Redox conditions influence radionuclide migration. Most repository concepts are based on a reducing environment. Under these conditions actinides and technetium are largely in a tetravalent redox state. Much higher solubility would be expected under oxidizing conditions. This is the principal reason that actinides contribute only a small amount to overall risk from a geological disposal facility. Redox conditions can however be influenced by waste compounds introduced to the near field (e.g. nitrates, organic matter) and in this context micro-organisms can play an important role. The EC ReCosy project dealt mainly with bulk redox conditions. <i>EC Projects: ReCosy</i>	 understanding of: (i) The temporal and spatial evengineered barrier systems (for concrete). (ii) The effect of redox perturb of nitrates / organic matter) ablistates (and mobility) of radiona (iii) The role of kinetics of radiona (iii) The role of kinetics of radiona terms and the spatial monitoring of local and transitions, including the associations. A small number of the spatial number	oluti r inst ation le to uclide ionuc ls for glob iated 'smal the o 'radii d cor ceme not re erated	ance around steel reinforcement in as (e.g. arising from the presence modify the expected oxidation es. elide reduction/oxidation. r identifying, simulating and bal anoxic conditions and/or redox modelling and transfer to realistic ller in-situ experiments may be xic phase after repository closure onuclides under perfectly well mplex conditions (pCO ₂ , pH, ent-based materials. Anoxic pplicate negative Eh; suitable d by the application of				
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest		-					
High	Medium	\checkmark	Low				

1.5.10 Ligand-Influenced Transport Modelling

Background Some long-lived non-heat gener contain large quantities of salts The release of salts may contrib salinity in local environments w	Research Needs/Driver Post-closure safety case uncertainty would be reduced by improved understanding of the impact of organic ligands on radionuclide solubility enhancement.						
radionuclide migration. In partic solids can be much lower than i salinity. Released organic matter formation of soluble complexes of otherwise sparingly soluble r migration of the organic ligands constitutes a possible mechanism of otherwise sparingly soluble r ligand front.							
Implementation Driven							
Transfer of Knowledge to LA	Transfer of Knowledge to LAPs						
Level of Common Interest				_			
High		Mediu	ım	\checkmark	Low		

1.5.11 Transport of Volatile Radionuclides						
Background Some radionuclides can exist in a volatile state, e.g. ³ H or ¹⁴ C. Both can be in an organic or inorganic form. During the operational phase, radionuclides may be released to the ventilation system. A source term is not yet known, but the quantities which are volatile will be rather low. The release of volatiles from irradiated graphite has been studied in the context of the Carbowaste and CAST programmes. <i>EC Projects: Carbowaste, CAST</i>	 Research Needs/Driver Although it is possible to make bounding estimates of the quantities of potentially volatile radionuclides in the waste, further quantification and determination of the release and transport mechanisms for both organic and inorganic fractions would be beneficial. Improved understanding of the influence of disposal system parameters (e.g. temperature, pressure, groundwater composition) and design on gas migration (including possible two-phase flow) in strongly heterogeneous near-field systems would also be beneficial. Research Objectives To develop a geochemical model for a non-saturated system describing the distribution of volatile radionuclides between surface films of water, the aqueous phase and the gas phase. To develop understanding of the capacity of host rocks and cement-based materials to interact with mainly ³H and ¹⁴C. 					
Implementation Driven Transfer of Knowledge to LAPs						
Level of Common Interest	1	ſ				
High	Medium	\checkmark	Low			

1.6 Geosphere

A site should be geologically stable in order to ensure safety and also be predictable over long timescales to the extent required for assessing safety performance. A stable geological environment is not likely to be subject to sudden or rapid detrimental changes over long timescales because of its resilience with respect to internal and external perturbations. The geosphere contributes to isolation by providing a stable location deep underground that protects the geological disposal facility from any significant perturbations to the natural environment that may occur over the timescales of interest. The geosphere contributes to containment by delaying the movement of any potential small amounts of long-lived radionuclides that are released from the facility, enabling their decay before they can pose a hazard to the biosphere.

The natural processes which may impact on the geosphere over the very long timescales associated with geological disposal are tectonics, uplift or subsidence and erosion, and the impacts of future climate, particularly potential future glaciations and related subglacial erosion and permafrost formation at more northerly latitudes. Processes generally occur more slowly at depth; therefore reasonable predictions of long-term behaviour and evolution can be made.

Groundwater movement through the environment will depend largely on the hydrogeological properties of the host rocks and cover rocks. It is necessary to develop an understanding of the hydrogeology at a site in sufficient detail to judge the suitability of the site and to meet the needs of safety assessments and engineering design.

Site characterisation comprises detailed surface and subsurface investigations and is required to acquire and interpret information on geological, hydrogeological and environmental and socio-economic conditions at a site, throughout all stages of the development and implementation of a geological disposal facility.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The level of common interest for the sub-domains are shown in Figure 10 below.

1.6.1 Fracture Filling;1.6.2 Geological Uncertainties;1.6.3 Groundwater Evolution;1.6.4 Rock-matrix Diffusion;1.6.5 Site Descriptive Models.

Figure 20: Level of Common Interest for Geosphere Sub-Domains.

1.6.1 Fracture Filling							
Background Most groundwater flow and thus radionuclide migration in higher-strength rocks takes place through a network of interconnected fractures. Fractures will be filled with precipitating minerals over time. How this happens will depend on various factors, including temperature and time. This could influence the porosity, permeability, organic surface coating, microbial community, and eventually the sorption coefficients of long-lived radionuclides on mineral surfaces.		Research Needs/DriverA thorough understanding of the processes of fracture filling by precipitating minerals is required to support the safety case for a geological disposal facility in higher strength rock.Research ObjectivesTo further understanding of this sub-domain, an activity could analyse fracture filling, including modelling of the composition of fracture filling minerals and the associated mechanical strength of					
EC Projects: CROCK		the fillers as a fun	ction of temperature a	nd time.			
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest	1		- 1				
High	Med	Medium Low			✓		

T

1.6.2 Geological Uncertainties							
Background A methodology for the quantification many technical areas of the proparticular, the need to demonstrative timescales post-closure requires a uncertainties. The development a assessment methodologies are essing the results of a safety assessment and stochastic) are always associate the substantiation that they have a characterized and managed is required.	Furthe charac related Resea To dev manag with si possib	rch Needs/Driver r research is required terize and manage ur to site characteristic rch Objectives velop the state-of-the ement of uncertaintic te characteristics, spe le geodynamics and to pations of the site in t	-art on the es associate ecifically tectonic	_			
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest					T		
High	Medium	\checkmark	Low				

1.6.3 Groundwater Evolution							
Background An important requirement of the safety assessment is to be able to demonstrate t long-term chemical stability and low flo conditions of the groundwater system at facility relevant depth over the period of	w crystalline and clay geological environments, and if these changes could have a detrimental impact on a facility.						
time during which the waste will be a hazard. Groundwater composition and flow patterns may be altered by past and future events, e.g. glaciation events and related subglacial erosion and permafros formation.	including composition ar events, such as climate cl	Research Objectives To increase understanding of groundwater evolution, including composition and flow, relating to past and future events, such as climate change, glaciation and related subglacial erosion and permafrost formation.					
Implementation Driven	·						
Transfer of Knowledge to LAPs							
Level of Common Interest							
High	Medium	✓ Low					

1.6.4 Rock-Matrix Diffusion							
Background		Research	Needs/Dr	iver			
Groundwater flow can take place	hrough networks of	For very l	ong-lived r	adionuclide	s it would	be	
interconnected fractures. However	, much of the porosity			elopment of			
and mineral surfaces in fractured r	ocks occurs not in the	to gain im	proved und	derstanding	of the impa	act	
fractures, but in the rock between	the fractures (the rock	of rock-m	atrix diffus	sion on trave	el time		
'matrix'). Radionuclide migration through the geosphere through the geosphere.							
would be slowed if this additional porosity and surface can Research Objectives							
be accessed. The mechanism by which radionuclides are To further understanding in rock-matri				-matrix			
transported through the pore water	into the low	diffusion	and ensure	learning fro	m more		
permeability rock matrix is diffusi	on. In the context of	advanced	Member S	tates is disse	eminated to)	
diffusive transfer between fracture	and rock matrix, the	less advar	nced progra	immes.			
process is termed 'rock-matrix dif	fusion'.						
Implementation Driven							
Transfer of Knowledge to LAPs	Transfer of Knowledge to LAPs						
Level of Common Interest							
High	Medium			Low		~	

1.6.5 Site Descriptive Models

			-				
data obtained during site charac Descriptive Model describes th properties of bedrock and water interacting processes and mech provides the understanding of t the site sufficient to allow furth	To maintain and develop understa and techniques for developing site models. To ensure that state-of-the-art tech interpret and model site characteri information are available or can be in a timely manner to support site					criptive les needed on de availabl	
Implementation Driven						\checkmark	
Transfer of Knowledge to LAPs						\checkmark	
Level of Common Interest	Level of Common Interest						
High	\checkmark	Mediu	ium Low				

5.2 Strategic Theme 2: Building Confidence

2.1 Safety Case

The safety case for a geological disposal facility may be broadly defined as "*a collection of technical, scientific, administrative and managerial arguments and evidence in support of the safety of a facility*"¹⁴. It aims to demonstrate that the facility will function according to prescribed requirements. As the safety case is a key input to support the decision to move through successive phases of a disposal programme, improved exchanges on methodologies, continued development of robust tools, and open access to knowledge of good practice are required to continue to improve safety case development, communication, and regulatory review.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 11 below.

- 2.1.1 Pre-closure disturbances;
- 2.1.2 Assessment Methodologies;
- 2.1.3 Uncertainty Treatment;
- 2.1.4 Dose Thresholds;
- 2.1.5 Managing Deviations;
- 2.1.6 Waste Acceptance Criteria.

Figure 31: Level of Common Interest for Safety Case Sub-Domains

¹⁴ IAEA (2012) The safety case and safety assessment for the disposal of radioactive waste specific safety guide, IAEA Safety Standards Series No. SSG-23.

2.1.1 Pre-Closure Disturbances							
Background Feedback, improved data and ongoing monitoring of the facility during construction, operations and closure will inevitability lead to iteration and periodic update of the safety case. This includes disturbances during the operational phase from accidents. In preparation for this, sharing of good practice and co-development of common approaches are required on how to appropriately maintain facility safety assessments, continue assurance of operational safety and confirm that actual conditions are consistent with the assumptions made in the underpinning long-term safety cases used for final licensing. The ageing of safety structures and components is of particular concern for operations over periods of one hundred years.	disturbances of Research Ob , To develop co scenarios) for	g the on loo jecti mmo safe	influence of pre-closure ng-term safety.				
Implementation Driven							
Transfer of Knowledge to LAPs			✓				
Level of Common Interest		1	1				
High	Medium	\checkmark	Low				

2.1.2 Assessment Methodologies							
Background The development and use of approp methodologies are essential for buil in the results of the safety assessme geological disposal facility. Scope in includes data clearance, comprehen	Research Needs/Driver As different disposal programmes adopt national- specific approaches to conduct safety assessments, there is a requirement to continue to share good practice internationally and continue development of advanced methodologies for construction and			5,			
checking, synthesis of evidence, sa and analyses. Of particular importa management of interactions and ite safety assessments, design develop adaptation, and data acquisition act site characterisation, research, techn demonstration, and monitoring.	facility licensing. Research Objectives Further research, transfer of knowledge and re of good practice on general methodologies for safety assessment identifying the different components and activities of a safety assessment			ogies for the crent	e		
Implementation Driven							
Transfer of Knowledge to LAPs	Transfer of Knowledge to LAPs						
Level of Common Interest							
High	Medium 🖌 Low						

2.1.3 Uncertainty Treatment							
Background Site and system-specific safety ass essential basis for the performance geological disposal facility. A key	e assessment of a challenge is the		iden	Driver ce in and further refin sensitivity and uncert			
safety assessment for long timesca the respective uncertainties. In ord confidence completeness, consiste advanced state-of-the-art of the di methods used for safety assessmen continuously reviewed and compa logical framework for all activities assessment, evaluation, enhancem communication of the safety case European level.	ler to increase ency and fferent means and nts have to be ured. Overall, a s required in the ent and	Research Objectives Develop common approaches to demonstrate operational and post-closure safety margins and					
Implementation Driven					\checkmark		
Transfer of Knowledge to LAPs					√		
Level of Common Interest							
High	Mediu	fedium 🗸 Low					

212	Uncontainty	Tweatment
2.1.	Uncertainty	I reatment

2.1.4 Dose Thresholds						
Background	Background Research Needs/Driver					
Dose thresholds, based on internation	onally	The radiological in	npa	ct of low doses over	the short a	nd
recognised epidemiology studies, p	provide the	long term is an area	a of	ongoing regulatory	and	
basis for the assessment of radiolo	gical impacts	stakeholder interest	t.			
resulting from nuclear operations.	Provision of	Research Objectiv	ves			
more relevant low-dose data may l	ead to	To facilitate exchar	nge	s on good practice of	n the	
refinement of these dose limits. Fu	ture doses	development of safety indicators applied in specific				
are modelled on the basis of a serie	es of	safety cases taking into account realistic facility				
environmental scenarios based upo	on climate	evolution scenarios and time periods.				
state and land use.		To undertake epidemiological studies of low-dose				
		radiological impact	ts.	-		
Implementation Driven						
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	High Medium Low					\checkmark

2.1.5 Managing Deviations							
Background The performance assessment of a disneeds to take account of high probal expected evolution scenarios, in add likelihood, but high impact evolution Scenarios for improved treatment ar communication include: deviations planned implementation and closure including the operational phase (and planned storage), delay in repository decisions, extreme perturbations and outcomes (Bayesian Networks) and incidents.	ility normal /in planned iition to lowperformancen scenarios.facility.dResearch CdUnderstandion safety,may impactlonger thanstarting conclosureassessmentspossibleDevelop imaccidents /communica	bigersta mplem e assess Dbjecti ng hov the ha dition : proved tion of unders	nding of the impact of entation scenarios has sment outputs of the ves v deviation (unplanned ndover state of the fat for long-term perform scenario treatment a deviations from norm stand key controls or	ed events) acility as th nance nd nal operati	ıe		
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest			1				
High	Medium		Medium				

2.1.6 Waste Acceptance Criteria								
Background Waste acceptance criteria are a kee disposal facility, taking into accor characteristics of the waste to be concept adopted, and local site co cooperation and coordination in d understanding of the processes go and how this translates into waste well as its use in the safety assess development.	int specific disposed, the disposal inditions. International leveloping better overning the source term acceptance criteria, as	of, invento methods, i Research To develop	onfidence ry uncerta ncluding s Objective o good pra	in, and furth iinty quantifi ensitivity stu	idies. for the			
Implementation Driven								
Transfer of Knowledge to LAPs					\checkmark			
Level of Common Interest					•			
High	Medium 🖌 Low							

2.2 Post-closure process modelling and upscaling

To evaluate the long-term evolution of all disposal facility components, a sufficient understanding of thermal hydro mechanical and chemical (THMC) processes is needed. In this process analysis it is necessary to integrate:

- Component material descriptions and their degradation during storage periods, together with understanding of post-closure evolution descriptions, particularly the transition from the non-saturated system to fully saturated one;
- The potential development of microorganisms which can catalyse certain chemical reactions;
- The variation of redox conditions, including the impact of substances released from waste packages;
- The thermo-hydro-mechanical behaviour of the rock and, in particular, the evolution of the damaged zone;
- Gas generation and identification of transfer pathways;
- Water saturation and swelling of bentonite used for backfill, plugs and seals; and
- Thermal evolution of the host rock and engineered barriers.

One of the challenges is to describe all of the couplings between those processes and to identify the most relevant ones for performance assessment. Modelling long-term THMC performance of the host rock, Excavated Disturbed Zone, bentonites, or disposal system components is usually done by means of a spatial and temporal finite element analysis. Upscaling of THMC models in time and space and the study of its validity and representativeness at all scales, constitutes a large field of research. This will combine both numerical developments and experimental work to confirm the choices in terms of representative volumes. This includes the representation of THMC parameters which could exhibit, in some cases, a significant natural variability.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 12 below.

- 2.2.1 THMC Evolution;
- 2.2.2 Performance of Plugs and Seals;
- 2.2.3 Oxidative Transients;
- 2.2.4 Upscaling THMC Models;
- 2.2.5 Natural Analogues;
- 2.2.6 Biosphere Models.

2.2.1 THMC Evolution						
Background			Resea	rch Needs/Driver		
The long-term performance of	the r	near-field rock, EDZ and	A safe	e and robust design	for the	
engineered barriers (e.g. benton	nite)	may be affected by coupled	dispos	sal concept for HLW	V requires	
THMC process evolution, inclu	Jding	g resaturation. It is necessary	detail	ed knowledge about	the THMC	
to understand the impacts of th			behav	ior of the host rock	and the	
evolution on the long-term per	form	ance of near field rock,	buffer	materials.		
concrete structures or bentonite	e buf	fer interactions. The effect	Resea	rch Objectives		
of temperatures >150°C on ber	ntoni	te buffer evolution should be	To fu	rther understand the	impact of	
considered for some disposal c			THMC on the behavior of the host			
consider the inclusion of therm	o-hy	dro-mechanical evolution	rock and the buffer materials.			
and impact on the EDZ.			To de	velop appropriate m	odels	
Some wastes may also produce	e gas	when they come into contact	coupling all the relevant			
with water; understanding of th	ne co	upling between water and	pheno	omenology impactin	g the key	
gas should therefore be taken in	nto a	ecount.	processes during the transition from			
EC Projects: BENCHPAR, H	E (H	leater Experiment)	the no	on-saturated period t	to saturation	
			follov	ving closure.		
Implementation Driven	Implementation Driven				\checkmark	
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	\checkmark	Medium		Low		

2.2.2 Performance of Plugs and Seals							
Background Modelling coupled THMC beh seals can be used to demonstrat system performs. A description mechanical performance of sea systems is necessary, including behaviour and resaturation and interfaces. The mechanistic mo processes during the saturation long-term behavior, is importan <i>EC Projects: RESEAL II, DOL</i>	te how the disposal of the chemical and is and plugging thermo-physical consideration of delling of physical phase, and of their nt.		Research Needs/Driver To further understand the coupled THMO behaviour of plugs and seals throughout closure phase. Research Objectives To develop improved modelling capabili provide reassurance over the long-term b of plugs and seals.		it the post-		
Implementation Driven					\checkmark		
Transfer of Knowledge to LAPs							
Level of Common Interest							
High							

2.2.3 Oxidative Transients							
Background		Researc	h N	eeds/Driver			
The construction and the operation	n of a disposal facility	To gain a	an i	mproved understand	ing of the		
will give rise to oxidative transien	its in the near-field that	spatial ex	xten	t and evolution with	time of		
could affect the safety functions p	rovided by various	oxidative	e tra	insients, as well as th	ne possible		
components (EBS and/or the host	rock). An improved	impact o	on sa	fety functions.	-		
understanding of such transients h	as already been	Research Objectives					
developed in previous EC projects	s (e.g. BENIPA, NF-	To investigate the oxidative transient in the					
PRO, FEBEX).		near field during the construction and					
EC Projects: BENIPA, NF-PRO,	, FEBEX	operation	nal	phases, notably with	regard to		
		corrosio	n of	metallic component	ts.		
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest							
High	Medium			Low		\checkmark	

2.2.4 Up-scaling THMC Models							
BackgroundResearch Needs/DriverTHMC model parameters vary with scale.Technical challenges remain regardingThere is a need to understand the upscaling of THrechnical challenges remain regardingmodelling for coupled hydro-mechanical-chemicaprocesses in time and space, and the study of its valueand representativeness at all scales and identificationevolution of mechanical propertiesrepresentative volumes.					emical its validity		
permeability, porosity, creep, o of fractures. This requires a con	evolution of mechanical properties, permeability, porosity, creep, or self-healing of fractures. This requires a combination of both modelling and experiments			istic	and/or stochastic app scaling aspects regar		
Implementation Driven			•			\checkmark	
Transfer of Knowledge to LAPs							
Level of Common Interest	Level of Common Interest						
High 🖌 Medium Low							

		2.2.5 Natura	l Analogues				
Background			Research Ne	eeds/	Driver		
Natural analogues are used to p	provi	de confidence in	Verification	and o	confidence-building f	for long-terr	m,
the long-term, large-scale proce	esses	expected in	large-scale p	roces	sses, and upscaling fr	om models	to
nuclear waste disposal. The fol			repository sc	ale.			
examples of the use of natural a		0					
element diffusion, radionuclide			Research Ol	bject	ives		
minerals, iron corrosion, glass a	altera	ation and alkaline			derstanding of the us		
perturbation.					vide confidence in the	e long-term,	,
Characterization of natural ana			large-scale p	roce	sses.		
test the relevance and the robus							
developed from laboratory exp							
Many natural analogues studies							
undertaken and it is important		he learning from					
more than three decades is not	lost.					1	
Implementation Driven							
Transfer of Knowledge to LA	Ps					\checkmark	
Level of Common Interest						•	
High		Mediu	m	\checkmark	Low		

2.2.6 Biosphere Models							
Background Understanding the behaviour of rac marine, terrestrial and atmospheric	Research Needs/Driver To enhance understanding of biosphere processes so as to improve safety case confidence.			ıs			
done via biosphere modelling, supported by a range of climate evolution scenarios which bound the uncertainty in future human and non-human biota activity.		Research Objectives To enhance the treatment of climate change, non- human biota, land-use and parameter derivation.					
<i>EC Projects: BIOCLIM, BIOMO</i> Implementation Driven	SA						
Transfer of Knowledge to LAPs							
Level of Common Interest							
High	High Medium 🖌 Low						

2.3 Numerical Tools

Understanding of physio-chemical processes affecting the evolution of disposal components and geological systems, and their consequences on radionuclide transfer, is based on both an experimental approach and the use of predictive modelling at different temporal and spatial scales. Relevance of modelling and numerical simulation is strongly linked to the development of tools able to represent complex systems in terms of processes and geometry over large time and space scales. Thus, the complexity of some mechanisms, strong multiple couplings, multiscale approaches, complexity of objects and heterogeneities to be simulated, management of uncertainties to identify key parameters, and integrated systems are all potential areas for RD&D in order to improve the understanding of disposal systems, and increase robustness in performance and safety assessment applications. In this field, some particular topics that would benefit from further development include:

- Multi-scale approaches from the atomic scale (< nm) to the scale of the geological formation (> 100 m) in order to validate relevant phenomena and input data utilizing homogenization and up-scaling techniques;
- Management of heterogeneity at all scales, such as natural variability of properties, anisotropy, singularities (fractures, fissures network), non-porous materials and voids, and numerical techniques which allow such heterogeneities to be taken into account;
- Multiple-process modelling, including development of algorithms and numerical methods for strong couplings at the large scale. Capability gaps exist in two-phase flow, reactive transport modelling and THMC couplings;
- Development / improvement (performance, accuracy, robustness) of tools in the area of high performance computing, as applied to system modelling, with numerical resolution methods (parallel solvers, domain decomposition, grid adaptation, scalability, etc.), allowing representation of complex integrated and heterogeneous systems; and
- Management and treatment of uncertainties (epistemic, stochastic) in complex models, in order to identify the key input data of the integrated system;
- Enhance understanding of biosphere processes so as to improve safety case confidence.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 13 below.

- 2.3.1 Performance Assessment Tools;
- 2.3.2 Open-source Performance Assessment Code;
- 2.3.3 Long-range Transport Models;
- 2.3.4 Multi-scale Reactive Transport Models;
- 2.3.5 Upscaling in Performance Assessment;
- 2.3.6 Heterogeneity;
- 2.3.7 Improved Computing.

Figure 13: Level of Common Interest for Numerical Tools Sub-Domains.

2.3.1 Performance Assessment Tools

Background		Research Needs/Driver				
Today, numerical simulation is a	Improved mathematical methods to: (i) analyse the					
tool to address the complexity of	flow and	importance of p	hysic	cal properties defined	l as input of	
transport of radionuclides in poro	us media at	a simulation on	the r	elevant output of the	simulation	
large time and space scales. How	ever, the results	(sensitivity anal	ysis)	and (ii) quantify the	effect of	
depend on the accuracy of the inp	out data and the	uncertainties on	thes	e outputs (uncertaint	y analysis).	
influence of each input parameter	might also be					_
difficult to quantify. As a consequ	uence, many	Research Obje			.1	
methods to treat uncertainties have	ve been	To develop a tool which includes algorithms that can be coupled to any kind of numerical code and provide				
developed (neural network, polyr	iomial, chaos,					
etc.) but these methods are still til	me consuming			b help analysis of the	data quality	
or do not utilise the most recent a	nd efficient	and the confide	nce c	of the result.		
mathematical algorithms.						
Implementation Driven						
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	Me	dium	\checkmark	Low		

2.3.2 Open-source Performance Assessment Code						
Background In the domain of unsaturated and multiphase flow and transport in porous media, the current leading numerical assessment code has been developed in Berkeley (USA). Its success comes from its open source model which allows researchers from all over the world to test their own model easily. However, in terms of performance, this code does not benefit from modern algorithms or numerical schema which can lead to poor performance or even crashes.	Research Needs/Driver To develop a High Performance can simulate multiphase flow an media. Research Objectives To develop a parallel tool for the models of multiphase flow and to should allow the code to be upde physical models or better numer The code should be as efficient a numerical models including up reasonable time. This requires the algorithms and/or optimized number	d transport in unsaturat e simulation of complex ransport. The open sou ated efficiently to benef- ical solvers. as possible in order to a to hundreds of millions he use of state-of-the-ar	ed porous c and large rce approach it from new ddress of cells in t parallel			
Implementation Driven						
Level of Common Interest	Transfer of Knowledge to LAPs Level of Common Interest					
High	Medium	Low	1			

2.3.3 Long-range Transport Models							
Background The migration of contamination from the repository through the geosphere is based on advective- diffusive transport models which take into account the properties of the geosphere, including geometry,			Research Needs/Driver There is the potential to improve the representation of the transport of contamination through the geosphere in support of the safety case.				
hydrodynamics, and other geological phenomena (weathering, erosion, glacial phenomena, overburden, etc.). Natural tracers can be used to verify models.			Research Objectives To extend and verify robust geosphere transport models.				
Implementation Driven							
Transfer of Knowledge to LA	Ps						
Level of Common Interest		1			1		
High		Medium 🖌 Low					

2.3.4 Multi-scale Reactive Transport Models							
Background The migration of contaminants (including radionuclides, non- radiological pollutants, etc.) from the repository is driven by complex mechanisms including, e.g. aqueous speciation, surface retention processes and multi-species driven transport. Multi-scale reactive transport modelling enables the consideration of processes described at different scales. Laboratory and in-situ experiments may be used for model validation.			Research Needs/DriverTo further develop the capability to model the migration of contaminants from the repository to the biosphere.Research ObjectivesTo develop improved multi-scale reactive transport models.			ve	
Implementation Driven							
Transfer of Knowledge to LAPs							
Level of Common Interest		1					
High	~	Medium	Low				

2.3.5 Upscaling in Support of Performance Assessment						
Background Up-scaling strategies (including bottom-up approaches) are developed to support and justify hypotheses, parameters and models used in performance assessment calculations. They are based on the understanding and modelling of the fundamental processes from the micro to macroscopic scale taking into account spatial heterogeneity, including multi- scale structuration of rocks/materials.		Research Needs/DriverUnderstanding the role of physical/chemical processes atdifferent scales and linking bottom-up and top-down approachesin performance assessments.Research ObjectivesTo extend up-scaling to the materials involved in radioactivewaste disposal, e.g. cementitious-based materials.To develop multi-scale approaches for coupled processes(including chemistry, mechanics, hydraulic, etc.).To develop multi-scale strategies to represent complexphenomena (redox processes, microbiology, mineraltransformation, etc.).				
Implementation Driven Transfer of Knowledge to LAP	G					
Level of Common Interest	3					
High		Medium	\checkmark	Low		

2.3.6 Heterogeneity								
Background The near and far field surrounding Disposal Facility is likely to be sul heterogeneities which are unlikely represented in models, e.g. from a	Research Needs/DriverTo undertake phenomenological and safety studies to take into account heterogeneities of the system (mineralogy, hydrology, water composition, permeability, porosity, fracture networks).							
view, heterogeneities are either get construction of the repository (void exist locally in the geological envi Integrated modelling taking into ac heterogeneities can provide signifi	Research Objectives To provide a modelling capability which can integrate available site data to account for heterogeneities in the near field.				ite			
Implementation Driven								
Transfer of Knowledge to LAPs								
Level of Common Interest								
High	Medium 🗸			Low				

2.3.7 Improved Computing					
Background High performance computing is currently a subject of high interest in order to reduce the duration of simulations.	Research Needs/DriverTo develop an innovative method to parallelize and distribute computation automatically on different computing materials (CPU, GPU, heterogeneous cluster and grid, etc.) with respect to the characteristics and available resources of each material.Research ObjectivesTo enable the use of numerical and highly parallelized code on a heterogeneous grid or cluster, especially in the following range of applications: hydraulic and solute transfer in huge integrated systems (disposal and geological media), two-phase flow and transfer at the system level, reactive transport at the scale of many components, THM couplings at a large scale.				
Implementation Driven					
Transfer of Knowledge to LAPs					
Level of Commo	n Interest	_		-	·
High	High Medium 🖌 Low				

2.4 Operational Safety

A disposal facility is designed, built and operated on the basis of a number of safety and technical requirements and assumptions. Their common driver is to ensure the prescribed level of human and environmental safety throughout the facility lifecycle. However, during the facility development and operations, deviations from the planned processes could be anticipated; some might be initiated by human errors, others by the lack of information about the host rock structures or behaviour; poorly controlled modifications from proposed technologies and materials might be another initiating mechanism. All these events may result in consequences in terms of operational and / or long-term safety. These events, even where less probable, should be thoroughly assessed so that they can be eliminated or otherwise mitigated through design or other controls.

Research topics regarding the operational phase of a disposal facility may include the assessment of potential accidental situations and their consequences and evaluation of Engineered Barrier System components and the host rock during facility operation; and the development of a European accident management and emergency preparedness database.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 14 below.

- 2.4.1 Fire and Explosion Assessment;
- 2.4.2 Flooding Risk Assessment;
- 2.4.3 Impacts of Operational Safety;
- 2.4.4 Accident Management and Emergency Preparedness;
- 2.4.5 Interim Storage Facility Safety.

Figure 14: Level of Common Interest for Operational Safety Sub-Domains
2.4.1 Fire and Explosion Assessment							
Background Preventing a release of radioactivity due to a fire or an explosion is a very	То	search Needs/Driver assess the impact of fire or explosing the operational phase.	sions	on the underground s	systems		
important principle during the operational phase of a geological disposal facility. This includes requirements from both the underground (mining) and nuclear regulations.	To bel In stro	Research Objectives To develop improved understanding and modelling tools to simulate the behaviour of a fire and the generated smoke in galleries and disposal vaults. In the case of a fire, the behaviour of the packages from some waste streams (such as bitumen encapsulated waste), as well as that of concrete overpacks, concrete liner and even the host-rock (locally) would benefit from further study.					
Implementation Driven							
Transfer of Knowledge to LA	Ps						
Level of Common Interest	Level of Common Interest						
High		Medium		Low		\checkmark	

2.4.2 Flooding Risk Assessment							
BackgroundResearch Needs/DriverExcessive ingress of water in a disposal facility, either from the geological formation or from the surface, may jeopardize operational as well as long term safety and performance. All potential pathways for water penetration need to be identified and potentialResearch Needs/Driver Assessment of any potential and resulting impact of excessive ingress of water in the disposal system.Research Objectives To identify potential pathways for water penetration need to be identified and potentialTo identify potential pathways for water penetration term safety and performance.					presentative		
consequences assessed.							
Implementation Driven					\checkmark		
Transfer of Knowledge to LAPs	5						
Level of Common Interest							
High		Medium Low					

2.4.3 Impacts of Operational Safety						
Background During facility operations, all actions shall respect the requirements of Nevertheless, some technologies	facility safety it w learned from other	listu voule r ge	rbance of operations d be beneficial to sha ological disposal faci	re lessons ilities as we		
improperly implemented, may re workers and negative impacts on	as mining operation facilities.	ons a	and conventional nuc	lear		
It would be beneficial to share le from other operational experience accidents internationally.	disposal related to	rios o dis	and analyse the cons- turbances caused dur ation of the facility.		'n	
Implementation Driven					✓	
Transfer of Knowledge to LAP	Ps					
Level of Common Interest						
High	Me	edium		Low		\checkmark

П

2.4.4 Acciden	nt Management and En	nergency	Preparedness	
Background Reporting systems have been estab disseminate information on accident information on events of safety sig lessons learned. These experiencess eliminating the likelihood of the re at other facilities, e.g. in nuclear get (International Nuclear Event Scale) Reporting System) have existed for complementary reporting system of significant event data and analyse to safety related overview of waste m	nts. The reports contain nificance with important assist in reducing or currence of similar events eneration, the INES) and IRS (Incident r many years. A ould be set up to collect hem in order to give a	To impro safety iss waste ma Research To identiti managem	Needs/Driver ve the understanding ues with regards to radinagement. Objectives fy good practice in the nent of radioactive wa ons learned.	dioactive
Implementation Driven				\checkmark
Transfer of Knowledge to LAPs				 ✓
Level of Common Interest				·
High	Medium		Low	✓

2.4.5 Interim Storage Facility Safety						
Background The operating lifetime of interim storage facilities is constrained by periodic safety assessments, which consider factors such as external attacks, earthquake resistance, aircraft accidents, monitoring/assessment of facilities with regards to ageing, monitoring/assessment of the performance of tanks for the storage of liquid waste, etc. Good practices with respect to the design criteria for new storage facilities are also of interest.		Research Needs/DriverTo share information about the operational lifespan of interimstorage facilities and to provide guidelines on how to managethe safety assessment of such facilities (further than in theIAEA Interim Storage of Radioactive Waste PackagesTechnical Report Series No. 390).Research ObjectivesTo review and further develop guidance on the operationallifespan of interim storage facilities and to provide guidelineson how to manage the safety assessment of the facilities.				
Implementation Driven				~		
Transfer of Knowledge to LAPs						
Level of Common Interest						
High	/	Medium	Low			

JOPRAD – D4.4 – Programme Document Issue 2

2.5 Practical Implementation

There is a need to demonstrate that the concept for disposal is practical in terms of its actual implementation in a host rock. There are many aspects to this, from large-scale testing of systems and equipment, to iterating the final design of the facility to allow for adaptations to actual site conditions.

In addition, during disposal facility operations there will be an ongoing need to evaluate the behaviour of key components of the repository system, or the impacts of the repository and its operation on the environment – and thus to support decision making during the disposal process and to enhance confidence in the disposal process. Observations may be continuous or periodic in nature, and may include measurements of engineering, environmental, radiological or other parameters and indicators / characteristics.

The sub-domains are listed below, and the specific scope, drivers and background for each are provided in the sub-domain tables below. The levels of common interest for the sub-domains are shown in Figure 15 below.

- 2.5.1 Operational Monitoring Strategies;
- 2.5.2 Monitoring Strategies for Closure and Post-Closure;
- 2.5.3 Monitoring Technologies;
- 2.5.4 Retrievability;
- 2.5.5 Concept & Design Adaptation;
- 2.5.6 Mock-Up Experiments;
- 2.5.7 Industrialisation;
- 2.5.8 Engineering Asset Management.

A further sub-domain, 2.5.8 Engineering Asset Management, was added post-consultation based on a consensus view which agreed with consultation feedback that this was missing from the original domain scope.

Figure 15: Level of Common Interest for Practical Implementation Sub-Domains

2.5.1	O	perational	Monit	oring	Strateg	ies
	~			8		

		•	8		0		
Background During the operational phase of a geological disposal facility it is likely that appropriately selected parameters will be monitored in order to provide reassurance of the as-built integrity of the disposal facility. In practice, the selection			Research Needs/Driver To develop monitoring strategies appropriate to the operational phase (including facility construction and work acceptance) of geological disposal facilities that will not adversely affect the performance of the disposal system.				
of the disposal facility. In practice, the selection of monitoring technologies is based on the safety case, concept and requirement for each parameter (measuring period, frequency). The EC MODERN and MODERN2020 projects have provided significant progress in this area. <i>EC Projects: SOMOS, MoDeRn, MoDeRn</i> 2020			by developing, triall strategies utilising st technologies. To inv	ent ad ing a tate-c vestig	lvances in monitoring nd assessing a range of-the-art cost-efficien ate the impact of mo mance of a range of c	of monitorin nt monitorin nitoring	ng
Implementation Driven			•			~	
Transfer of Knowledge to LAI	Ps						
Level of Common Interest							
High	\checkmark		Medium		Low		

2.5.2 Monito	2.5.2 Monitoring Strategies for Closure and Post-closure						
	ckfilled choose to period of t such a could be neficial,	Research Needs/Driv To provide reassurance identifying possible pa closure stage up to the the development of app wireless transmission,	e of c trame end o propr	eters for monitoring d of institutional contro riate monitoring techr	uring the post- ol including niques (e.g.		
maintained if society considers it beneficial, although it is a principle of geological disposal that assurance of safety does not require post-closure monitoring. It should be noted also that any post-closure monitoring decided by future generations should be designed in such a way that there are no negative impacts on the performance of the containment barriers and therefore on the long-term safety of the repository would occur. Monitoring during the institutional control period could also form part of the decision process on when to close the facility.		Research Objectives To select safety param technologies (e.g. wire autonomy technologies provide reassurance of facilities during a perio In implementing such consider in advance w event that the monitoria and how to determine of the monitoring equi natural barriers.	eless t s, geo the i od of a stra hat a ing eo whet	transmission, large er ophysical techniques) integrity of geologica post-closure institution tegy it would also be ction would be requir quipment gave negation her such readings are	hergy which could l disposal onal control. necessary to red in the ve indications due to failure		
Implementation Driven							
Transfer of Knowledge to LAPs							
	Level of Common Interest						
High		Medium	\checkmark	Low			

2.5.3 Monitoring Technologies

Background Although considerable effort has been development of monitoring technologi		earch Needs/Driver
development utilising evolving techno beneficial. The combination of non-inv considered an essential aspect of moni advantages over common intrusive me The ambition includes an increase in th and chemical properties that are monit means for cross-correlating monitoring Monitoring technology selection is als provide minimal disturbance to the eng R&D is necessary in order to develop a improved monitoring technologies that disposal cell, seal and plug. Monitoring systems for a disposal faci to be functional for long periods of tim monitoring systems for other industrie function for this length of time and cur unlikely to provide the requisite reliab durations. Online data concepts and data transpar considered. <i>EC Projects: MoDeRn 2020</i>	ies further improved set further improved set facility vasive techniques is it technic to may system to range of physical tored to allow the gresults. Set based on the need to gineered barriers. and characterise mapping twill not disturb the shear To de technic (100 years+). Most ility may be required technic	develop innovative technical solutions and rovement of existing technologies to litate the integration of monitoring nologies into the final repository design and maintain the reliability of the monitoring ems. earch Objectives develop chemical parameter measurement nologies suitable for the disposal facility fronment. develop technologies to enable fast geologic pping of the excavation front to detect faults / ar zones. develop architectural elements that enable ple monitoring of the disposal cells. develop enhanced data processing nologies (e.g. drift analysis, robot, far field nics, etc.). nvestigate the reliability and robustness of nitoring systems over long time periods, uding hardware, software, communications, lity of data and maintenance.
Implementation Driven		
Transfer of Knowledge to LAPs		
Level of Common Interest		
High ✓	Medium	Low

	2.5.4 Ret	trievability				
 Background Reversibility is based on governan technical project management syst technical project management syst corresponds to the ability to remove emplaced in the deep geological for The aim of retrievability is to: Provide flexibility in oper repository, Reconsider the choice of method (repackaging) bef disposal, Or even reconsider geolog the management method f the waste during the oper Some technologies to retrieve wast developed and tested within the EC 	ems. Among the ems, retrievability ve waste packages ormation. rating the waste packaging fore return to gical disposal as for some or all of ating period. te packages were	 Durabi ability Durabi mainte Remov jeopara Aptitud compo reequij Research Obje To assess the of (waste package hundred years) To develop tech 	lersta ility c to be ility c nanc val op dising de fo nents <u>opping</u> ctive durat unalo	anding of the followin of waste packages ensi- e handled, of structures ensuring e of functional free p peration performed w g safety, r dismantling of parti s (for cells and drifts) g the facility.	the lay, ithout al closure and for t compone m (about o	ents
EC Projects: ESDRED						
Implementation Driven					•	
Transfer of Knowledge to LAPs Level of Common Interest						
High	Med	lium		Low		 ✓

2.5.5 Concept and Design Adaptation							
Background The feasibility and suitability of a set disposal concept(s) is an ongoing ac design and layout of the disposal sy the associated evaluation of operatio	Research Needs/Driver Assessment of the technical feasibility and lifecycle adaptation of a geological disposal concept for a specific site and specific nuclear waste type.				ele		
safety and an assessment of socio-economic aspects. With respect to overall concept feasibility assessment, a common view on areas of significant safety impact could be identified and proposal formulated for appropriate degree of regulatory control. As disposal programmes progress through successive stages of development, the process for concept adaptation and optimisation requires careful consideration.		Research Objectives Development of a common view on areas of significant safety impact with respect to technical feasibility of a geological disposal concept. Development of change control approaches to appropriately capture design adaptation and feedback into safety assessment.					
Implementation Driven					\checkmark		
Transfer of Knowledge to LAPs Level of Common Interest							
High	Medium	Medium Low		Low		\checkmark	
2.5.6 Mock-up Experiments							

		2.5.6 Mock-	up Experiment	S			
Background To verify the robustness, and demonstrate feasibility and the reliability, mock up experiments are needed. It would be beneficial to demonstrate the design of several elements such as tunnel seals or high level waste cells at full scale. Mock-ups can be at several scales from metre scale to full scale within URLs. EC Projects: LUCOEX		to build some con engineered barrie component will p Research Object	eded, mplezers. Se perfor tives	firstly to demonstrate c components such as econdly, to demonstra m as expected.	seals or the seal seal seal seal seal seal seal sea	e	
Implementation Driven						\checkmark	
Transfer of Knowledge to LAP	S						
Level of Common Interest							
High		Medium Low			Low		\checkmark

	2.5.7	7 Industrialization				
Background The industrialization of aspects of implementation of a geological disposal facility may need to be considered. An example of this is industrialization - excavated rock will be reused to backfill tunnels. Long term storage of such material during the operational phase could lead to geochemical transformations. The packaging of backfill materials (pellets, blocks, etc.) must be chosen in such a way as to comply with requirements (e.g. in terms of mechanical stability or hydraulic performance) while remaining compatible with industrial scale application and quality assurance. Other examples could be waste emplacement technologies, retrieval technologies and sealing technologies.	excavated rock with some additives such as cement to improve mechanical properties or bentonite to increase swelling capacity.					.)
Implementation Driven					✓	
Transfer of Knowledge to LAPs						
Level of Common Interest					·	
High		Medium	\checkmark		Low	

2.5.8 Engineering Asset Management						
Background 'Asset management' refers to the strategic plan, processes and actions that are needed to upkeep the production system in an efficient and effective manner over the whole life cycle of the system. Engineering asset management offers a set of processes, methods and tools for system reliability evaluation, life cycle cost assessment, maintenance development and setting Key Performance Indicators for asset management operations.	Research Needs/DriverNuclear waste deposition facilities will be operational over decades.During this time, a plenitude of maintenance activities and modernisationof assets (including equipment, machinery, infrastructure, real estate,data/computer systems, etc) are required. The requirements arising fromthe upkeep and improvement of the assets and a preliminary assetmanagement strategy should be defined already in the design phase.Knowledge can be shared to less advanced programs based oninternational experience.Research ObjectivesTo develop concepts for cost-effective asset management strategies for adeposition facility.To develop criteria for managing assets that balances risk, cost and benefit of the assets over their life cycles. Evaluate alternative scenarios for asset management approaches.					
Implementation Driven	I				✓	
Transfer of Knowledge to LAPs	Transfer of Knowledge to LAPs ✓					
Level of Common Interest – To be determ	ined -	Indicative Score of Medium				
High	Medium 🗸 Low					

JOPRAD – D4.4 – Programme Document Issue 2

5.3 Strategic Theme 3: Integrated Knowledge Management System (IKMS)

'Knowledge' here refers to the scientific and technical knowledge generated in RD&D activities in radioactive waste management, as well as experience from the implementation of disposal programmes.

Establishing and implementing an Integrated Knowledge Management System (IKMS) within the European Joint Programme in radioactive waste management and disposal is motivated by four main objectives that will be met by the deployment of specific activities/tools, outlined in Table 3.

	Aims	Objectives	Activities/tools	
1.	Preserve/ capitalize knowledge	Ensure that knowledge is documented, maintained and kept accessible in order to enable present and future waste management programmes and generations to benefit from the knowledge generated through past, on- going and future collaborative activities European level. The emphasis is on scientific-technical knowledge for the expert community.	Establish, maintain and up-date State of Knowledge Documents.	
2.	Transfer of knowledge towards Member-States with early-stage RWM programme	Ensure that Member-States with national programmes at an early-stage of implementation can take advantage of existing knowledge and know-how from the Member-States with most advanced national programmes.	Establish, maintain and up-date State of Knowledge Documents; Development of guidance documents ¹⁵ for establishing and implementing national R&D programmes to support radioactive waste disposal solutions; Training courses.	wledge Handbook
3.	Transfer of knowledge	Ensure that the necessary expertise and skills are maintained through generations of experts in view of the long lead-times and operational time-spans (several decades) for radioactive waste management and disposal by providing training and mobility for researchers.	 Establish, maintain and up-date State of Knowledge Documents. Development of guidance documents for establishing and implementing national R&D programmes to support radioactive waste disposal solutions. Making use of large infrastructure, (Hot-Lab facilities, URLs,) and existing training opportunities (ENEN,): Training Courses; Training Mobilities; Professional Networking; Implementation of specific tools, as identified, for transfer of knowledge to MSs with less advanced implementation levels. 	Web structured Knowledge Handbook

Table 3: Overview of the four main aims, objectives and associated activities/tools to establish and implement an IKMS

¹⁵ Taking account of the waste management programme implementation level and size, and level of complexity in the waste inventory.

	Aims	Objectives	Activities/tools
4.	Collate and disseminate knowledge	Establish and implement a dissemination strategy with specific actions adapted to each target group ¹⁶ that will show the added- value and maximise the impact of the European Joint Programme, notably in achieving scientific excellence, contributing to competitiveness, solving societal challenges and achieving a high-level of engagement.	 Dissemination and demonstration of progress, results and added-value of the European Joint Programme to a wide audience, including consideration of: Annual EJP meetings with scientific-technical proceedings; Media-events Reports for Policy and Decision makers; Presentation of the EJP outcome at international conferences and events; Interaction and exchange with international organizations.
5.	Identify knowledge needs	When needed, carry out strategic studies in support of national programmes, e.g. identifying where a common understanding on a particular topic needs to be reach and if necessary, elaborate upon how to proceed with this topic (RD&D activities, knowledge management activities, position paper, etc.)	• Strategic studies (Networking Activity WPs).

The suggested tools/activities are described in more detail below. The outcomes of these activities will be accessible via the Web-structured Knowledge Handbook.

5.3.1 State-of-Knowledge Documents

Knowledge Handbook							
documents in the field of RWMD will interactive synthesis with the aims of disseminating and communicating the where we are today, how we got there bibliography and links towards scienti relevant deliverables), remaining unce knowledge gaps and alternative views differences. The frontier scientific-tec	ckground entific and technical State-of-Knowledge (SoK) cuments in the field of RWMD will be developed as eractive synthesis with the aims of documenting, seminating and communicating the state-of-the-art (i.e. ere we are today, how we got there, including bliography and links towards scientific publications, evant deliverables), remaining uncertainties and owledge gaps and alternative views and their key ferences. The frontier scientific-technical Knowledge, duding underlying basic processes, are interlinked in Knowledge Handbook						
Level of Commitment							
Number of Organizations that have Committed to developing this proposal WMO/TSO/RE/CS/WP/other							
Number of Member States							

¹⁶ Target groups could be: <u>Scientific and technical stakeholders</u> (Joint Programme contributors, waste management organisations, SITEX, research entities, students, early career scientists/engineers, engineering companies, international experts, IAEA, NEA, European Technology platforms, EC, national decision makers, experts from civil society, etc.), <u>local stakeholders and civil society organisations</u> engaged in the proposed EJP (if any), <u>wider public</u> interested in RWM.

5.3.2 Guidance

Guidance								
ackground Descriptive methodological guidance / good practices shall e established in order to support Member-States in stablishing and implementing their national RD&D rogramme for the safe management of spent fuel and adioactive waste while considering knowledge gaps to be lled in for all steps of RWM activities and individual vaste streams, in accordance with the timeframe of their lational RWM programme - as required within the Waste Directive (Article 12).		Needs/Driver Member States need to have "the research, development and demonstration activities that are needed in order to implement solutions for the management of spent fuel and radioactive waste;" (Waste Directive Art. 12.1(f)). Objectives Provide Guidance for Member States establishing and implementing national R&D, competence & skills, and transparency programmes, providing the basis for benefiting from the RWMD-EJP.						
Level of Commitment								
Number of Organizations that have committed to developing this proposal								
Number of Member States								

5.3.3 Training

		Training	
Background The scientific-technical expert knowledge Handbook is turned into p through the use by the expert commu this knowledge to new experts, or wide expertise of existing ones, requires sp transfer activities. Measures to implete knowledge transfer include, summer topics and specific thematic training of mobility measures. Other knowledge such as establishing competence develop activities are also considered. This is done as an element in support them providing for their necessary co and skills. Education measures for the more basi expertise and skills are implemented, through collaboration with European activities on education and internation	pract nity. denin becifi ment scho modu trans elopr of N ompe to the foru	tical application The transfer of ag of the field of ic knowledge t such ol with general ules and training sfer activities ment networks Member States in tence, expertise ements towards ne extent useful, ms and	Needs/Driver "Member States shall ensure that the national framework require all parties to make arrangements for education and training for their staff, as well as research and development activities to cover the needs of the national programme for spent fuel and radioactive waste management in order to obtain, maintain and to further develop necessary expertise and skills." (Waste Directive, Art. 8) Objectives Transfer the scientific-technical Knowledge managed within the knowledge handbook, to the expert community in the different Member States. Thereby, the knowledge transfer is aimed at, in particular maintaining the present expertise, developing next generation of experts, and supporting national programmes in early implementation stages as well as small programmes to develop the necessary expertise.
Number of Organizations that have committed to developing this proposal		WMO/TSO/RE/ CS/WP/other	

Number of Member States

Diss	emination tools and	channels
Background There are various dissemination tools be deployed to implement the dissem choices of these tools will depend on the dissemination, on the target a messages to be convened: w publications, media events, workshops/conference, conference pa	ination strategy. The the main objective of udience and on the ebsite, newsletters, organisation of	Needs/DriverDrivers for dissemination are amongst others, the need for transparency as of Art. 10 of the waste directive: <i>"Member States shall ensure that necessary</i> <i>information on the management of spent fuel</i> <i>and radioactive waste be made available to</i> <i>workers and the general public</i> <i>and</i> <i>Member States shall ensure that the public be</i> <i>given the necessary opportunities to</i> <i>participate effectively in the decision- making</i> <i>process"</i> Thereby, dissemination of the RWMD-EJP outcome is part of the overall need for justifying the resources used to actors beyond the scientific-technical expert community.Objectives The knowledge generated and managed within the RWMD-EJP is disseminated to a broader interested set of actors, including Civil Society, decision and policy makers, waste producers, and a broader interested community through the media.
Level of Commitment		
Number of Organizations that have committed to developing this proposal	WMO/TSO/RE/ CS/WP/other	
Number of Member States		

5.3.4 Exchange and Dissemination of Knowledge

5.3.5 Networking/Strategic studies

Strategic studies are initiated in order to agree upon needs for future activities, including further specific thematic studies or RD&D. This may also be referred to as 'think-tank' activities to determine if there is a RD&D need on an emerging issue, if there is a need of a position paper or if it is considered mature and suitable for knowledge management activities.

The results of the questionnaire carried out within JOPRAD allowed the identification of some topics that could be suitable for the IKMS, which are outlined below. Tables giving more information on their background, drivers, objectives and prioritisation (as assessed through the JOPRAD project) follow.

3.1 Site Uncertainty Treatment;

- 3.2 Site Evolution Models;
- 3.3 Site selection;
- 3.4 Technical and Socio-political Siting Criteria;
- 3.5 Inventory Collation & Forecasting;
- 3.6 Evolution of Waste Inventory;
- 3.7 Link to Waste Producers/Fuel Manufacturers;
- 3.8 Concept Adaptation and Optimisation;
- 3.9 Safety Case Guidelines, Management & Review.
- 3.10 Disused Sealed Radioactive Sources;
- 3.11 Pre-licensing Management;

- 3.12 Radiation Protection Optimisation Principle;
- 3.13 Information Management (interfacing with NEA RepMet);
- 3.14 EU Research Infrastructure;
- 3.15 EU DGR Curricular;
- 3.16 Reversibility.

3.1 Site Uncertainty Treatment Background **Needs/Driver** During the process of site selection for geological disposal, early phases There is a need to undertake the site selection process in spite of the will typically involve consideration of a number of sites with different qualities and, often, limited data that is directly relevant to making presence of considerable uncertainty judgements on suitability for long-term disposal. A decision needs to be arising from a paucity of data. taken on the number of candidate sites to be taken forward for **Objectives** characterisation. Later this small number will need to be narrowed down To develop and document best to those taken forward for implementation. Early phases of site selection practice guidance to support site processes will therefore involve substantial uncertainty due to the selection processes, recognising the scarcity of data. Decisions need to be taken that are based upon the best uncertainty inevitable present due to prospects for successful implementation given this uncertainty. How this a lack of detailed site uncertainty is characterised, communicated and taken into account in the characterisation data. identification of potential candidate sites will be extremely important \checkmark Transfer of Knowledge to LAPs Level of Common Interest ~ High Medium Low

	3.2 Site Evolution Models					
during the site characterisation. site evolution model will describ changes to the geochemical, geotechnical and hydrogeologica	A site evolution model will be developed based on data obtained during the site characterisation. The site evolution model will describe changes to the geochemical, geotechnical and hydrogeological properties of the disposal facility andThere is a need to understand how to develop site evolution models, a how to manage data as it is obtained during the site characterisation phase. Objectives To further knowledge on site evolution models, and how the 				terisation	1d
0	Transfer of Knowledge to LAPs					
Level of Common Interest	vel of Common Interest					
High	\checkmark	Medium Low				

3.3 Site Selection Process	
Background A site identification process will be used to evaluate areas within participating communities to identify combinations of surface site and below-ground rock formations which may have the potential to host a geological disposal facility. Potential candidate sites will be assessed against pre-specified criteria taking account of stakeholder perspectives on the relative importance of these criteria. Typically, based on the results of	Needs/Driver Member States and their national implementing bodies have a need to identify potential sites for disposal of their radioactive wastes.

investigation. The Government wor taken forward.	ites could be taken forward for furthe ild then decide which site(s) will be ude: geological setting; potential hea on the natural environment and ponomic conditions; transport and		Objectives To develop a process best practice when d the optimum site for disposal.	leciding upor	n
Transfer of Knowledge to LAPs				\checkmark	
Level of Common Interest					
High					

3.4 Technical and Socio-Political Siting Criteria							
Background Siting of a disposal facility will require close understanding between		Driver s have a need to implement a dispos acility, of which closure is an impo			ull life cycle		
technical and socio- political groups. When a facility is closed, and whether the closure is partial, or full, will need to be decided between both technical and socio- political groups.	To exar closure To iden based c	Objectives To examine the technical and socio-political criteria on which a partial or full closure could be decided. To identify the conditions required to implement the decision-making process based on criteria, in terms of technical means (surveillance strategy and methods), pluralist expertise and governance scheme involving the various stakeholders.					
Transfer of Knowledge to l Level of Common Interest	LAPs				\checkmark		
High		Medium		Low	\checkmark		

3.5 Inventory Collation & Forecasting								
Background In order to implement a facility fo wastes, an inventory must first be An inventory will include categor	developed.	Needs/DriverThere is a need to ensure that all countries implementing a disposal facility have developed a comprehensive inventory.						
volumes based on known wastes, wastes likely to be produced in the		Objectives To transfer knowledge of good practice in inventory collation and forecasting.						
Transfer of Knowledge to LAPs		I		\checkmark				
Level of Common Interest								
High	Medium	\checkmark	Low					

3.6 Evolution of Waste Inventory						
Background Besides the need for R&D activities there is a common interest in organ cross-cutting activities on the methodologies applied to define the	Needs/Driver To further understanding on the evolution of the radionuclide inventory after disposal.					
methodologies applied to define the radionuclide inventories (e.g. use of radionuclide vectors, uncertainties about databases of radionuclide properties).		Objectives A particular example of uncertainty in need of evaluation is the potential impact of neutron activation on the evolution of the radionuclide. inventory after its disposal.				
Transfer of Knowledge to LAPs					\checkmark	
Level of Common Interest			-			
High		Medium		Low		\checkmark

3.7 Link to Waste Producers/Fuel Manufacturers								
Background	Needs/Dr	leeds/Driver						
It is important for	To streng	o strengthen the link between implementers and waste producers.						
implementers of a								
disposal facility to have	Objective	Dbjectives						
strong links with the	To enhand	To enhance links to fuel manufacturers - horizon scanning of prospective fuels and						
waste producers, to		BU / better knowledge of linear power.						
understand the types of		ce integration of fuel manufacturer						
waste and volumes of	1	f spent fuel and nuclear waste dispo			nderstand			
waste arising.	spent fuel	arisings, including those from inno	ovativ	ve fuel types.				
Transfer of Knowledge to	o LAPs				\checkmark			
Level of Common Interes	st							
High		Medium		Low		\checkmark		

3.8 Concept Adaptation and Optimisation

Level of Common Interest	Background The feasibility and suitability of preferred disposal concept(s) is a involving the review of disposal layout, together with the associar operational and long-term safety of socio-economic aspects. With concept feasibility assessment, a areas of significant safety impac and proposals formulated for an of regulatory control. As disposa progress through successive stag the process for concept adaptation requires careful consideration.	adaptation of a specific site and Objectives To develop a co safety impact w selected or prefe designs for spec To develop char capture design a	geolo d spec ommo ith re erred eific g nge c adapt ough		ficant lity of epts and aste type ropriatel safety	es.		
	Transfer of Knowledge to LAP	S				✓		
High Medium Low V	TT' 1		Med	ium		Low		

3.9 Safety Case Guidelines, Management & Review						
Background The lifecycle of a disposal facility corphases, with important work relating achieved throughout e.g. identification sites, the characterization of sites, the design concepts and preliminary design construction, operation and closure of accordance with international safety work should be carried out within the	safety impact could be identified and proposals formulated for an appropriate degree of regulatory control.					
safety case which collects scientific, administrative and managerial argum evidence in support of the safety of the facility. Experience has been gained with (pre- processes in a number of countries, we to meaningful discussions with count advanced programmes.	 Objectives The following (pre)licensing issues are of common interest: Analysing current available practices and developing guidelines; Developing guidance for reviewing the safety case; Evolution of the safety case content with the lifecycle of the disposal facility. 					
Transfer of Knowledge to LAPs				✓		
Level of Common Interest				·		
High	Med	ium	\checkmark	Low		

3.10 Disused Sealed Radioactive Sources							
Background Disposal of radioactive waste is implemented in order to transfer into a state of passive safety. How for comparably small inventories Disused Sealed Radioactive Sour (DSRS), the requirements and resources for safe storage are mo Storing DSRS with half-lives tha require isolation of the material f the biosphere for longer time-per than a few years could thus be an option in some cases.	wever s of rces dest. t rom riods		ich c to di te up stabli role terna oving ory f	onditions safe longer-tern isposal. on R&D and knowledge t shment of a common of longer-term storage of tive to disposal. technology for improved or a small near-surface rep	n storage ransfer `DSRS a treatmer	ls	
Transfer of Knowledge to LAPs	S			\checkmark			
Level of Common Interest							
High		Medium		Low		\checkmark	

3.11 Pre-licensing Management

several years, in some cases of the up-dating during operation, and liv of the order of a century. The licensing phase can benefit fr phase. This may include, amongst identified and prepared for their ta common understanding of how to understanding of what is required requirements and common unders understanding of transparency and needs, etc. A well-structured pre-licensing ph implementation in the succeeding	e ord icens rom t asks, o imp l in d stand d sta d sta	ifferent phases, availability of clear ing of what they are, common keholder involvement benefits and can therefore be vital for successfu	e n is ng re	Needs/Driver There is a need to make use of the pre-licensing phase in support of successful licensing of geological repositories. This is also true for other waste management projects with extended licensing periods. Objectives To identify R&D and knowledge transfer needs in support of defining pre-licensing activities that can support success in the licensing phase/process.
Transfer of Knowledge to LAPs	5			✓
Level of Common Interest				
High		Medium		Low 🗸

3.12 Co-disposal Interactions							
 Background Co-disposal of radioactive waste of c be possible in some geological dispo- with different properties may occur, of (e.g. spent fuel, vitrified glass, etc such as long-lived alpha containing v to a situation where dissolution plum national programmes, (co-) disposal waste is foreseen for a single geolog R&D is to: identify waste types and compose problematic for the integrity and assess the potential impact on sa propose remedial actions such as respective disposal concepts, or types in order to avoid the poten 	 enabling disposal of wastes with a variety of compositions and properties. Research Objectives To identify R&D or knowledge transfer in support of optimization of disposal of wastes of different characteristic composition and properties in a single 						
Transfer of Knowledge to LAPs			✓				
Level of Common Interest							
High	Medium		Low 🗸				

BackgroundThe development of a geological disposal system for radioactive waste requires consideration of the 'radiation protection optimisation principle' during concept selection, design development and ongoing safety analyses within the framework of the safety case. In 2010, an expert group convened by the NEA reviewed international approaches and available guidance and experience, concluding thatNeeds/Driver Development of guidance on how to develop and optimise geological disposal facility designs with respect to the Recommendations of the International Commission on Radiological Protection. ICRP Publication 122.Objectives Improved methodologies for applying the principles of 'Best Available Technology' (BAT) and 'As Low As Reasonably Practicable' (ALARP) to disposal system development to ensure	3.13 Radiation Protection Optimisation Principle						
guidance and experience, concluding that Practicable' (ALARP) to disposal system development to ensur	e development of a geological stem for radioactive waste req nsideration of the 'radiation pr timisation principle' during co ection, design development ar fety analyses within the frame fety case. In 2010, an expert go nvened by the NEA reviewed	Needs/Driver Development of guidance on how to develop and optimise geological disposal facility designs with respect to the Recommendations of the International Commission on Radiological Protection. ICRP Publication 122. Objectives Improved methodologies for applying the principles of 'Best					
there are significant differences in the way national programmes approach the requirements of radiation protection during concept and design optimisation. the safety and radiological risks resulting from the disposal system throughout its lifecycle are reduced so far as reasonably practicable and immediate (operational) risks are balanced against the post-closure risk.	idance and experience, concluere are significant differences in tional programmes approach tiquirements of radiation protect	(ALARP) to disposal system developmed d radiological risks resulting from the di- ghout its lifecycle are reduced so far as and immediate (operational) risks are bal					
Transfer of Knowledge to LAPs							
Level of Common Interest	vel of Common Interest						
High Medium Low	High	Low					

3.14 Information Management (NEA RepMet)								
Background Information management, record kee	eeping and	Needs/Drive		on, knowledge and records over	er the			
maintaining memory are important	long lead- an	d im	plementation-timelines of					
context of implementing geological and OECD-NEA are involved in pr			al programmes, from pre-licens st-operational phase.	ing				
support of those aspects. The outco	me of their work is		e por	, operational phase.				
transferred through participation in establishing the guidance and recon	Objectives To identify potential R&D and knowledge transfer in			or in				
as through dissemination of the out		support of improving information management, and						
conferences, proceedings and guide	record and memory keeping in support of geological disposal programmes.			gical				
		disposal prog	gram	mes.				
Transfer of Knowledge to LAPs				\checkmark				
Level of Common Interest								
High				Low				
	2 15 EU D	T						

	3.15 EU Research Infrastructure
Background Across Europe there are several	Needs/Driver To understand the breadth and depth of research infrastructure across Europe.

organisations	Objectives								
within many		o document the extent of European research infrastructure: databases, equipment,							
countries with	capabilities, e	capabilities, etc.							
infrastructure	To facilitate n	Γο facilitate networking and sustain joint European research infrastructures with state-of-							
(databases,	the-art invest	the-art investigative equipment.							
equipment,	To establish a database on partner's competencies and establish conditions allowing for								
capabilities, etc.)	transnational access i.e. for advanced light sources, analytical equipment (surface/solution/								
relating to the	solid), actinide laboratories, hot cells, radioanalytical labs, underground research facilities								
disposal of	and high perf	and high performance computation, considering in particular allowing access for waste							
radioactive waste.	management and disposal programmes at all stages of advancement.								
Transfer of Knowledge to LAPs									
Level of Common	Level of Common Interest								
High	,	\checkmark	Medium		Low				

3.16 EU DGR Curricular							
Background Given the timescales for implementation of geological disposal in the order of tens to hundreds of years, there will be a requirement to consider the management and capture of knowledge. There will be a number of the work force retiring and an associated loss of knowledge and skills. At the same time the waste management sector will be competing with other sectors of industry for young graduate employees. There is an identified need to develop a European curriculum on radioactive waste management and geological disposal of radioactive waste. A considered approach is required to promote quality assurance of training for professionals and education and training programmes in geological disposal. Such an approach could be along the lines of the European Credit system for Vocational Education and Training (ECVET).					Needs/Drive To ensure known managed and disseminated there is comp maintenance, and training of Objectives To develop a wide training for geologica	, and that betence education of workforc European	
Transfer of Knowledge to LAPs							
Level of Common Interest							
High		Medium			Low		\checkmark

3.17 Reversibility						
Background		Needs/Driver				
Reversibility describes the ability in						
the progressive implementation of a	1 V	in reversibility of decisions or				
1 10 0	epository for radioactive waste will ta					
place over many decades and should	be open to progress in science and	challenges remain to be				
technology, to evolving societal dem	01	addressed with regards to				
implementation errors. In this regard	, selecting technologies that are as	reversibility, including those				
reversible as possible is a prudent ap	proach. (R&R International Conferen	related to safety and economy.				
and Dialogue, December 2010, Rein	Objectives					
The principle of reversibility should	be taken into consideration in plannir	ng a To develop a common positions				
disposal facility so that later generation	ons should have the possibility for	across Europe, and to exchange				
retrieval during the various stages of	implementation of a facility. Such	good practices.				
reversibility should also be considered	reversibility should also be considered in the design of the repository.					
Transfer of Knowledge to LAPs	\checkmark					
Level of Common Interest						
High	Medium	Low 🗸				

6. Socio-Political Cross-Cutting Themes

The SITEX SRA, together with Civil Society representatives involved in JOPRAD have identified specific "socio-political confidence building themes" that may assist in addressing the complexities¹⁷ of radioactive waste management that have been considered during the development of the JOPRAD Programme Document. Geological disposal programmes are integrated (complex, holistic) sociotechnical systems that aim to achieve safe disposal of radioactive waste over long timescales. Such programmes comprise various activities that are integrated so as to make it possible to take sound decisions that involve difficult technical challenges as well as polical, ethical and financial choices and trade-offs. Radioactive waste management has a composite nature and involves a combination of natural resources, technological artefacts, scientific knowledge and expertise, together with social, political and cultural resources. It entails an irreducible dimension of uncertainty that is associated with the (very) long-term dimension of environmental evolution and its potential impact on a Geological Disposal Facility.

Such socio-political themes gather together several social and political factors that have been identified as essential aspects of the development and implementation of geological disposal and which interface with technical themes. The sub-themes outlined in this Section are expected to be addressed (in future research projects) within integrated technical projects where appropriate. In the perspective of better addressing the complexity of Geological Disposal in a future joint programme, it is suggested to take advantage of the socio-political confidence building themes and to incorporate them into "complex/multidisciplinary" research projects involving both technical and non-technical dimensions, as outlined in Figure 16.

Figure 16: Embedding Social and Technical Sciences in a future joint programme.

An exploratory description of several complex/multidisciplinary research projects is available in the deliverable D3.7 of the JOPRAD project [12]

Social and political research activities under a future joint programme are <u>not</u> intended to be self-standing activities separated from the technical aspects of geological disposal. On the contrary, they are intended to be integrated with the other technical and non-technical dimensions involved in order to properly address the complex (holistic) nature of this activity.

¹⁷ Complexity means here the existence of several dimensions of a problem that cannot be addressed and dealt with separately.

The contribution of civil society, as outlined by Figure 17, relates to both more technical and complex research projects:

• Within more technical research projects (Technical Project 1 and 2 in Figure 17), civil society may contribute activities of "Knowledge Sharing and Interpretation" (KSI) that would involve interactions with knowledgeable CS experts involved in the research, thus enabling civil society to share, interpret and evaluate the results as the project progresses.

• **Complex/multidisciplinary research projects** (Complex Project 3 in Figure 17), gathering technical scientists and **social scientists**, will also entail specific research methodologies such as "**Citizen Sciences**" (meaning here directly involving people, amateur or non-professional scientists in the production of trustworthy and reliable scientific knowledge).

Three socio-political confidence building themes have been identified:

- 1. Safety Culture;
- 2. Uncertainty, Epistemology and Social Trust;
- 3. Socio-technical Hybridisation and Aggregating a Diversity of People, Stakeholder Engagement.

A brief description of each of the 3 socio-political confidence building themes is given below.

1. Safety Culture	
Background The safety of geological disposal is linked not only with natural or technical factors, but also with the way complexity is managed by human systems. A key challenge is to prevent the specific obsolescence associated with long term compartmentalization (in silo fragmentation) of organisations that compromises their capacity to cope with changes, crisis, ruptures, and evolutions of the world that are likely to occur along the long-term perspective of radioactive waste management. Safety culture is a means for coordinating the various actors engaged around a "common goal" of safety. Particular attention is to be given to safety culture during the (long term) operational phase of geological disposal that relies on active safety management. Rather than being directed toward "public acceptance," efforts can be oriented toward inclusive dialogue steered equally by all parties.	Needs/DriversTo ensure that stakeholders and thepublic are engaged in reviewing thesafety of radioactive wastemanagement strategies andgeological disposal.ObjectivesTo investigate the conditions andmeans for developing interactionsbetween various categories ofstakeholders and the public in thecontext of enhancing the safety ofradioactive waste managementstrategies and geological disposal.

The inherent uncertainties, as well as the

implementation of geological disposal,

This will involve uncertainties, for the

local, national and international levels,

successive generations of stakeholders at

investigating whether it is possible for each

generation to inherit, actualize and update

maintaining social cohesion and solidarity.

previous radioactive waste management

strategies, achievements, remaining

questions and uncertainties, while

inter-generational dimension of long-term

makes it necessary to understand how social

trust building processes may unfold along the

stages of a phased decision making process.

Background

2. Uncertainty, Epistemology and Social Trust

Needs/Driver

To further understand the implementation of epistemological strategies within each generation and along successive generations.

Objectives

To investigate the implementation of epistemological strategies such as "procedural rationality" (involving incremental knowledge building and decision management) and "distributed rationality" mobilizing societal capacities within each generation and along successive generations. This research area could also encompass a historical review of the interactions between the public and the stakeholders in the context of different kinds of hazardous activities (including nuclear and other risks).

3. Socio-technical Hybridization & Aggregating a Diversity of People, Stakeholder Engagement.

Background	Needs/Driver
The sustainability of long term	To further understanding on socio-technical hybridization of
governance of geological disposal is	geological disposal implementation strategies.
linked with the diversity of	
stakeholders effectively involved	To further understanding on aggregating a diversity of people,
(along successive generations), and	including capacities of collective intelligence regarding
their capacity to form and maintain	radioactive waste management and geological disposal
common goals and to give meaning to	implementation.
new information and potential	Objectives
disruptive events, along the	To examine the conditions and means for enabling the
implementation of geological	hybridization of technical and social perspectives and the
disposal. This diversity is itself linked	matching of values in the early framing of the problems.
with the existence of a comprehensive	
understanding of geological disposals	To determine the conditions and means for incorporating new
as hybrids taking on board a diversity	components of society as active stakeholders and potential
of social and technical components	contributors to the collective intelligence and creativity in
that matters for the stakeholders.	order to address the complex issue of radioactive waste
	management and geological disposal implementation.

7. Implementation strategy

The Joint Programme in Radioactive Waste Management and Disposal should be seen as a sustainable European network gathering all RD&D Actors sharing together a **Vision** and a RD&D programme for the next 10 -15 years that also includes Knowledge Management and Civil Society engagement aspects.

This shared programme will be described in a self-standing reference document – the **Strategic Research Agenda**, which comprises Section 4 of this document.

When it comes to deploying the Strategic Research Agenda, JOPRAD recommends using the **EC EJP-Cofund tool** which is a 5-year implementation and EC funding tool specifically dedicated to implementing European Joint Research [7].

A **Deployment Strategy** describing the activities that need to be implemented within the next 5 years should be defined and agreed by all Actors and then implemented by submitting an European Joint Programme (EJP) to the EC.

The Joint Programme Implementation Strategy must be backed-up with a **Governance Scheme** that should respect the following principles:

- *Inclusiveness* i.e. to ensure that the different categories of Actors and Groups of Interest are involved in the definition and implementation of the Joint Programme;
- *Transparency* i.e. to ensure that decisions are taken in a transparent way, especially regarding how, why and by whom projects and activities are evaluated, selected and implemented;
- *Balance and equity* i.e. to strive for the highest level of balance and equity by covering interests in RD&D/cross-cutting activities of the different categories of Actors/Groups and by fair distribution of budget;
- *Preservation of independence* i.e. to avoid conflicts of interests and preserve the independence between the "Expertise function" and the "Implementing function";
- *Flexibility* i.e. to ensure that new Actors can get involved and that new activities can be launched in the course of an implementation phase.

It is expected that a document entitled 'Setting-Up a European Joint Programme on Radioactive Waste Management and Disposal' will be published later this year.

Acknowledgements

We would like to thank the JOPRAD Working Group 4 for their input to this Programme Document. We also extend our thanks to all colleagues who have engaged and responded to the questionnaire phase of the development of this document, participated in engagement activities and responded to the consultation.

8. **REFERENCES**

[1] OJEU (2011), The Council Directive 2011/70/EURATOM, establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste ("Waste Directive"), Official Journal of the European Union 2 August 2011.

[2] IAEA Safety Standards Series No. GSG1 'Classification of Radioactive Waste – General Safety Guide' IAEA Vienna, 2009.

[3] J Delay (2016), Report on WMOs in the EU, JOPRAD Report Deliverable D2.5.

[4] R. Kowe, E. Scourse, T. Beattie (2016), Aspects of the IGD-TP to be included in Joint Programming on Radioactive Waste Disposal, JOPRAD Report Deliverable D3.3.

[5] SITEX-II (2015) Setting a Strategic Research Agenda, Deliverable n°D1.1 of the SITEX-II project.

[6] B. Grambow (2015), Strategic Research Agenda of European Research Entities, JOPRAD Report Deliverable D3.5.

[7] B. Autrusson, E. Salat and P. Dick (2016) Conditions for implementing a Joint Programme, JOPRAD Report Deliverable D3.2.

[8] IAEA Safety Standards Series No SSR-5 'Disposal of Radioactive Waste – Specific Safety Requirements' IAEA Vienna, 2011.

[9] IGD-TP (2011), Strategic Research Agenda, Implementing Geological Disposal of Radioactive Waste Technology Platform, ISBN 978-91-979786-0-6.

[10] IGD-TP (2012), Deployment Plan 2011-2016, Implementing Geological Disposal of Radioactive Waste Technology Platform, ISBN 978-91-979786-1-3.

[11] F. Lemy, P. Janssen (2017) Aspects of the SITEX SRA to be included in a JP, JOPRAD Report Deliverable D3.4.

[12] J. Dewoghelare, G. Heriard Dubreuil, Y. Marignac (2017) Civil Society Views on the Content and Governance of a Joint Research Programme JOPRAD Report Deliverable D3.7.

[13] G. Buckau, A. Van Kalleveen, V. Matuzas and G. Ferraro (2016), Horizontal activities, JOPRAD Report Deliverable.

Appendix 1: Programme Document Working Group Representatives

This Programme Document has been produced by the Programme Document Working Group, including the named representatives from the following organisations across Europe:

•	Bernd Grambow	CNRS
•	Bruno Autrusson	IRSN
•	Pierre Dick	IRSN
•	Elisabeth Salat	IRSN
•	Christophe Serres	IRSN
•	Tara Beattie	MCM
•	Ally Clark	MCM
•	Ellie Scourse	MCM
•	Jitka Miksova	CVREZ
•	Lumir Nachmilner	CVREZ
•	Antonin Vokal	SURAO
•	Ray Kowe	RWM
•	Jonathan Martin	RWM
•	Robert Winsley	RWM
•	Jacques Delay	Andra
•	Marie Garcia	Andra
•	Frederic Plas	Andra
•	Stéphan Schumacher	Andra
•	Gunnar Buckau	JRC-ITU
•	Alexandra van Kalleveen	JRC-ITU
•	Julien Dewoghélaëre	Mutadis
•	Gilles Hériard-Dubreuil	Mutadis
•	Yves Marignac	Mutadis
•	Valéry Detilleux	Bel V
•	Pierre Janssen	Bel V
•	Frank Lemy	Bel V

Appendix 2: List of all Organisations contacted with the JOPRAD Questionnaire¹⁸

Actor Type	Organisation Name	Country	Responded to Questionnaire
RE	National Centre for Scientific Research (CNRS)	France	Yes
RE	National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA)	Italy	Yes
RE	National Nuclear Laboratory (NNL)	UK	
RE	University of Pierre and Marie Curie (UPMC)	France	Yes
RE	Belgian Nuclear Research Centre (SCK CEN)	Belgium	Yes
RE	The French Geological Survey (BRGM)	France	Yes
RE	Lithuanian Energy Institute (LEI)	Lithuania	Yes
RE	The French Alternative Energies and Atomic Energy Commission (CEA)	France	Yes
RE	European Joint Research Centre (JRC)	Germany	
RE	Karlsruhe Institute of Technology (KIT)	Germany	
RE	The Netherlands Organisation for Applied Scientific Research (TNO)	The Netherlands	Yes
RE	Czech Technical University of Prague	Czech Republic	Yes
RE	UJV Rez	Czech Republic	
RE	Technical University of Sofia	Bulgaria	
RE	Instituto Superiore di Sanita	Italy	Yes
RE	Instituto Nazionale di Geofisica e Vulcanologia	Italy	Yes
RE	National Institute of Nuclear Physics (INFN)	Italy	Yes
RE	Delft University of Technology	The Netherlands	
RE	National competence Centre for Industrial Safety and Environmental Protection (INERIS)	France	
RE	Technical University Wien (TUW)	Austria	
RE	University of Natural Resources and Life Sciences (BOKU)	Austria	
RE	Federal Ministry for Economic Affairs and Energy (BMWI)	Germany	Yes
RE	Bulgarian Academy of Sciences (BAS)	Bulgaria	105
RE	Research Promotion Foundation (RPF)	Cyprus	
RE	Centre for Nuclear Technologies (DTU)	Denmark	
RE	University of Tartu	Estonia	
RE	Estonian Research Council	Estonia	
RE	VTT Technical Research Centre	Finland	
RE	The Federal Institute for Geosciences and Natural Resources (BGR)	Germany	
RE	National Technical University of Athens (NTUA)	Greece	
RE	Institute of Nuclear Technology & Radiation Protection at the National Centre of Scientific Research (INT-RP)	Greece	
RE	Budapest University of Technology and Economics (BME)	Hungary	
RE	Hungarian Academy of Sciences and Centre for Energy (MTA)	Hungary	
RE	National Agency for Energy and Research Innovation	Luxembourg	1
RE	Geological Survey of the Netherlands	The Netherlands	
RE	Utrecht University Faculty of Geosciences	The Netherlands	
RE	Central Laboratory for Radiological Protection	Poland	
RE	Polish Geological Institute and National Research Institute	Poland	Yes
RE	Nuclear and Technological Campus (CTN), of the Instituto Superior Técnico (IST)	Spain	
RE	Centre for Energy, Environmental and Technological Research (CIEMAT)	Spain	Yes
RE	Technical University of Madrid (UPM)	Spain	
RE	The Engineering and Physical Sciences Research Council (EPSRC)	UK	
RE	The Natural Environment Research Council (NERC)	UK	
RE	VUJE	Slovakia	
RE	The State Geological Institute of Dionýz Štúr	Slovakia	

¹⁸ Those in bold denote the organisations that JOPRAD Partners

Page 97

RE	Slovenian National Building and Civil Engineering Institute	Slovenia	
RE	Geological Survey of Slovenia	Slovenia	
RE	Paul Scherrer Institute (PSI)	Switzerland	Yes
WMO	Nuclear Engineering Seibersdorf GmbH (NES)	Austria	
WMO	Radioactive Waste Management Directorate (RAWMD)	Bulgaria	
WMO	APO	Croatia	
WMO	Radioactive Waste Repository Authority (Surao)	Czech Republic	Yes
WMO	The Economy and the Ministry of Communications	Estonia	
WMO	The National Radioactive Waste Management Agency	France	Yes
	(ANDRA)		
WMO	The Federal Office for Radiation Protection (BfS)	Germany	Yes
WMO	Greek Atomic Energy Commission (EEAE)	Greece	
WMO	Public Limited Company for Radioactive Waste Management	Hungary	Yes
	(PURAM)		
WMO	State Enterprise Radioactive Waste Management Agency	Lithuania	
	(RATA)		
WMO	Central Organisation for Radioactive Waste (COVRA)	The Netherlands	Yes
WMO	Polish Radioactive Waste Management Plant	Poland	
WMO	SOGIN	Italy	Yes
WMO	Latvian Environment, Geology and Meteorology Centre (LEGMC)	Latvia	
WMO	Technological Campus of Instituto Superior Técnico, University of Lisbon	Portugal	
WMO	National Agency for Radioactive Waste (ANDRAD)	Romania	
WMO	Nuclear and Decommissioning Company (JAVYS)	Slovakia	
WMO	Slovenian Agency for Radioactive Waste Management (ARAO)	Slovenia	Yes
WMO	National Cooperative for the Disposal of Radioactive Waste (Nagra)	Switzerland	Yes
WMO	Posiva Oy, Nculear Waste Management Organisation	Finland	Yes
WMO	Enresa Radioactive Waste Management Organisation	Spain	Yes
WMO	Swedish Nuclear Fuel and Waste Management Company (SKB)	Sweden	Yes
WMO	Ondraf/Niras, Belgium Radioactive Waste Management Organisation	Belgium	Yes
WMO	Radioactive Waste Management Limited	UK	Yes
TSO	Global Research for Safety (GRS)	Germany	Yes
	DECOM		Yes
TSO TSO	Institue 'Jožef Stefan'	Slovakia Slovenia	1 68
TSO	Centre for Physical Sciences and Technology (CPST)	Lithuania	Yes
TSO	TS Enercon Kft (TSE)	Hungary	Yes
TSO	NRG	The Netherlands	Yes
TSO TSO	Reseach Centre Rez (CVREZ)	Czech Republic	Yes
	NESCALII VEILLE NEZ (V NEZ)	Czech Kepublic	1 68
TSO	Institute for Radiation Protection and Nuclear Safety	France	Yes

Appendix 3: Overview of SRA Strategic Themes, Domains and Sub-Domains

The table below gives an overview of the SRA, including the strategic themes, domains and sub-domain titles.

The sub-domains that are in italic font and with a grey background denote those that have been classified as having low common interest in this SRA.

The sub-domains that are in blue have been classified as having a high level of common interest.

Strategic Theme 1: Building Understanding					
1.1 Inventory, Waste Form and Waste Characterisation					
1.1.1 Inventory Uncertainty	1.1.6 Fourth generation (Gen (IV)) wastes				
1.1.2 Waste Characterisation Techniques	1.1.7 Chemotoxic Species				
1.1.3 Non-mature and Problematic Waste Conditioning	1.1.8 Novel Radioactive Waste Treatment Techniques				
1.1.4 Radionuclide Release from Wasteforms other than Spent Fuel	1.1.9 Spent- Fuel Evolution				
1.1.5 Geopolymers	1.1.10 Spent Fuel Fissile Content				
1.2 Waste Packages and Consequences of Sto	orage				
1.2.1 Waste Package Interfaces	1.2.3 Alternative HLW/Spent Fuel Container Material Development				
1.2.2 Impacts of Extended Storage on Waste Packages	1.2.4 Reworking of Damaged and Aged Waste Packages				
1.3 Near-field and Engineered Barrier Syste	m				
1.3.1 Bentonite and other Clay Based Components	1.3.5 Metallic & Cementitious Chemical Perturbations				
1.3.2 Microbial Influence on Gas Generation	1.3.6 Salt Backfill				
1.3.3 Cementitious Component Behaviour	1.3.7 HLW/ILW Near-field Evolution				
1.3.4 Low pH Cements	1.3.8 Co-Disposal Interactions				
1.4 Gas Generation and Transport					
1.4.1 Gas Migration through the Excavated disturbed Zone/EBS and Far-Field	1.4.3 Gas Transients				
1.4.2 Gas Generation Processes	1.4.4 Gas Reactivity				
1.5 Radionuclide and Chemical Species Mig	ration				
1.5.1 Chemical Thermodynamics	1.5.7 Temperature Influence on Radionuclide Migration				
1.5.2 Sorption, Site Competition, Speciation and Transport	1.5.8 Colloid Influence on Radionuclide Migration				
1.5.3 Incorporation of Radionuclides in Solid Phases	1.5.9 Redox Influence on Radionuclide Migration				
1.5.4 Transport of Strongly Sorbing Radionuclides	1.5.10 Ligand-Influenced Transport Modelling				
1.5.5 Effects of Microbial Perturbations on Radionuclide Migration	1.5.11 Transport of Volatile Radionuclides				
1.5.6 Organic-Radionuclide Migration					
1.6 Geosphere					
1.6.1 Fracture Filling	1.6.4 Rock Matrix Diffusion				
1.6.2 Geological Uncertainties	1.6.5 Site Descriptive Models				
1.6.3 Groundwater Evolution					
Strategic Theme 2:	Building Confidence				
2.1 Safety Case					
2.1.1 Pre-closure disturbances	2.1.4 Dose Thresholds				
2.1.2 Assessment Methodologies	2.1.5 Managing Deviations				

 $JOPRAD-D4.4-Programme\ Document\ Issue\ 2$

2.1.3 Uncertainty Treatment	2.1.6 Waste Acceptance Criteria
2.2 Post-closure Process modelling and up	scaling
2.2.1 THMC Evolution	2.2.4 Upscaling THMC Models
2.2.2 Performance of Plugs and Seals	2.2.5 Natural Analogues
2.2.3 Oxidative Transients	2.2.6 Biosphere Models
2.3 Numerical Tools	
2.3.1 Performance Assessment Tools	2.3.5 Upscaling in Support of Performance Assessment
2.3.2 Open-source Performance Assessment Code	2.3.6 Heterogeneity
2.3.3 Long-range Transport Models	2.3.7 Improved Computing
2.3.4 Multi-scale Reactive Transport Models	
2.4 Operational Safety	
2.4.1 Fire and Explosion Assessment	2.4.4 Accident Management and Emergency Preparedness
2.4.2 Flooding Risk Assessment	2.4.5 Interim Storage Facility Safety
2.4.3 Impacts of Operational Safety	
2.5 Practical Implementation	
2.5.1 Operational Monitoring Strategies	2.5.5 Concept & Design Adaptation
2.5.2 Monitoring Strategies for Closure and Post- closure	2.5.6 Mock-up Experiments
2.5.3 Monitoring Technologies	2.5.7 Industrialization
2.5.4 Retrievability	2.5.8 Engineering Asset Management
Strategic Theme 3: Integrated Ki	nowledge Management System (IKMS)
3.1 Site Uncertainty Treatment	3.9 Safety Case Guidelines, Management & Review
3.2 Site Evolution Models	3.10 Disused Sealed Radioactive Sources
3.3 Site Selection Process	3.11 Pre-licensing Management
3.4 Technical and Socio-political Siting Criteria	3.12 Co-disposal Interactions
3.5 Inventory Collation & Forecasting	3.13 Radiation Protection Optimisation Principle
3.6 Evolution of Waste Inventory	3.14 Information Management (NEA RepMet)
3.7 Link to Waste Producers/ Fuel Manufacturers	3.15 EU Research Infrastructure
3.8 Concept Adaptation and Optimisation	3.16 EU DGR Curricular
	3.17 Reversibility

Appendix 4: Changes in 'Level of Common Interest' to Sub-Domains

Based on the consultation comments, some of the sub-domains have had their 'Level of Common Interest' altered. The methodology for this was as follows:

- 1. Suggestions for changes to Level of Common Interest were collated from all consultation comments for all sub-domains;
- 2. If a sub-domain had 2 or more suggestions for changes to Level of Common Interest from separate organisations, then the additional votes were incorporated into Step 3, outlined above.

This resulted in the followings sub-domains increasing in their Level of Common Interest:

- Sub-domain 1.4.2 Microbial Influence on Gas Generation moved from a Medium Level of Common Interest to a High Level of Common Interest;
- Sub-domain 1.7.5 Site Descriptive Models moved from a Medium Level of Common Interest to a High Level of Common Interest;
- Sub-domain 2.2.2 Performance of Plugs and Seals moved from a Medium Level of Common Interest to a High Level of Common Interest; Sub-domain 2.5.7 Backfill Industrialisation (now called 'Industrialisation) moved from a Low Level of Common Interest to a Medium Level of Common Interest.

The 'Consequences of Storage' sub-domain was combined with the 'Waste Packages' sub-domain to form new 'Waste Packages and Consequences of Storage' sub-domain. As a consequence, sub-domain 1.3.2 – Impacts of Extended Storage on Waste Packages has moved into this new sub-domain and sub-domain 1.3.1 – Re-working of Aged Waste has been combined with sub-domain 1.2.1 – Damaged and Re-working Packages.

In addition, there were multiple comments that suggested a re-calculation of the data based on the 4 Research Entities for France being combined into one response, rather than counting as separate responders (as shown in Table 1). When combining responses, the highest priority score was taken. This resulted in changes to the following sub-domains:

- Sub-domain 1.2.1 Damaged and Re-working Packages moved from a Low Level of Common Interest to a Medium Level of Common Interest;
- Sub-domain 1.4.6 Salt Backfill moved from a Low Level of Common Interest to a Medium Level of Common Interest;
- Sub-domain 1.7.5 Site Descriptive Models moved from a Medium Level of Common Interest to a High Level of Common Interest;
- Sub-domain 3.15 EU Research Infrastructure moved from a Medium Level of Common Interest to a High Level of Common Interest.

All of these changes have been incorporated into this document and are reflected in the domain overviews and sub-domain tables.

Appendix 5: Consultation Response – New Domains for Future Consideration in an EJP

New Domain 1: Disposal concepts for small amounts of radioactive waste

The costs associated with existing waste disposal technologies are not commensurate with the resources available in small national programs. Without a convincing solution for the long-term management of their wastes, small programs cannot deploy appropriate management strategies since the disposal concept is a decisive parameter for the selection of treatment and conditioning techniques enabling safe waste disposal. Furthermore, the time scale of construction, operation and closure of the disposal facility is essential for the determination of interim storage specifications where the radioactive waste will be stored prior to disposal. The cost for long-term storage is prohibitive and therefore the determination of a cost-effective and safe disposal solution in the next years is a necessity for small national programs.

The following sub-domain is currently identified:

New Domain 1.1 Borehole disposal concepts for small amounts of radioactive waste

New Domain 1.1 Borehole dispos	sal concepts for small amounts of radioac	ctive waste
Background The Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management and the European Council Directive 2011/70/EURATOM require all Member States to establish a transparent and appropriate national program for the disposal of their radioactive waste. A possible suitable option for small programs is the disposal in engineered fit-for-purpose boreholes, which offer the prospect of economic disposal on a small scale while meeting all the safety requirements. Concepts for the disposal of sealed sources in boreholes at depths of several tens of meters and the disposal of HLW in deep boreholes of 3 to 5 km are already investigated. The use of the borehole disposal concept for solid radioactive waste not being sealed sources at intermediate depths (i.e. hundred to a few thousands meters) is nor realized neither sufficiently investigated, but seems to be a cost- effective and safe solution for countries with low amounts of radioactive waste.	 Needs/Driver To investigate the possibility for countries without power program to dispose of small amounts of rad waste in boreholes especially at intermediate depth Objectives Comparison of possible disposal options with small amounts of radioactive waste of disposal, near-surface disposal options, dused mines, bunkers and tunnels, multi-red disposal facilities, etc.), Study of conceptual designs for the safe a effective disposal of all types and classes in intermediate depth boreholes, Development and assessment of technolo stabilize large diameter boreholes (1 to 3) Development of technical requirements a technologies for the retrieval of waste part boreholes, Development of an optimized safety barr. Preliminary determination of waste accept for the application of this disposal option Development of methodologies to assess safety provided by the disposal system 	ioactive is. for countries (borehole isposal in egional and cost- of solid waste gies to m), nd ekages from ier system, otance criteria , e,
Implementation Driven		\checkmark
Transfer of Knowledge to LAPs		✓
Organisations having expressed an inter BMLFUW (Austria), University of Cyprus Demokritos (Greece), DMT (Germany), IS	s (Cyprus), CV REZ (Czech Republic), EEAE (Gree	cce), NCSR

New Domain 2: Engineering Asset Management

A further sub-domain, 2.5.8 Engineering Asset Management, was added post-consultation based on a consensus view which agreed with consultation feedback that this was missing from the original domain scope.

New Domain 1.2 Engineering Asset Management						
Background 'Asset management' refers to the strategic plan, processes and actions that are needed to upkeep the production system in an efficient and effective manner over the whole life cycle of the system. Engineering asset management offers a set of processes, methods and tools for system reliability evaluation, life cycle cost assessment, maintenance development and setting Key Performance Indicators for asset management operations.	Nucl Durin of as data/ the u mana Knov intern Rese To d depo To de	arch Needs/Driver ear waste deposition facilities will ng this time, a plenitude of mainten sets (including equipment, machine computer systems, etc) are required pkeep and improvement of the asse agement strategy should be defined vledge can be shared to less advance national experience. arch Objectives evelop concepts for cost-effective sition facility. evelop criteria for managing assets fit of the assets over their life cycle sset management approaches.	hance ery, in d. The ets an alrea ced p asset that	activiti nfrastru e requin id a pre ady in the rogram	ies and modernisation icture, real estate, rements arising from liminary asset he design phase. s based on gement strategies fo	n ra
Implementation Driven	Implementation Driven 🗸					
Transfer of Knowledge to LAPs						
Level of Common Interest – To be determined – provisional indicative score of Medium allocated.						
High		Medium	\checkmark		Low	