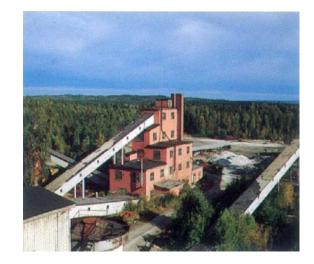


Site characterisation in the Swedish crystalline rock before and after submitting the construction licence

Peter Wikberg

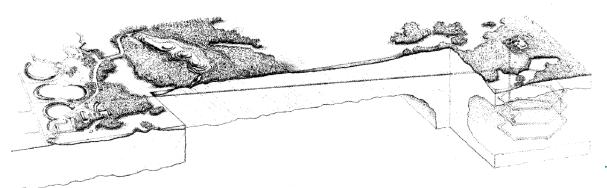
Where to learn and how to learn about the Swedish granitic rock

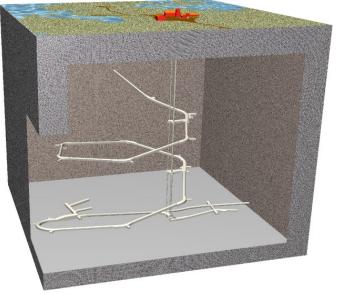


From the study site investigations 1977-1985 From the underground test facilities

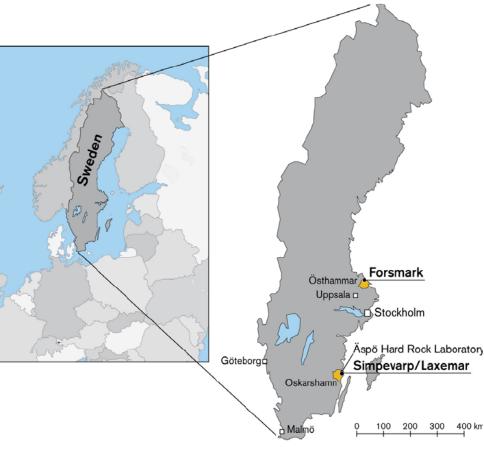
Stripa Mine Project 1977-1992

- Development of characterization techniques and integrated characterization and modeling of site data
- Fracture flow and transport modeling
- Basis for understanding of channeling and its importance for radionuclide transport
- Basic designs of engineered barriers (buffer, backfill and plugs) and basic understanding of their performance
- Successful international cooperation
 - Initiation of Task Force on groundwater flow and transport
 - Initiation of Task Force on Sealing materials and techniques
 - Knowledge transfer
- Experience essential for later work at Äspö HRL and other underground laboratories

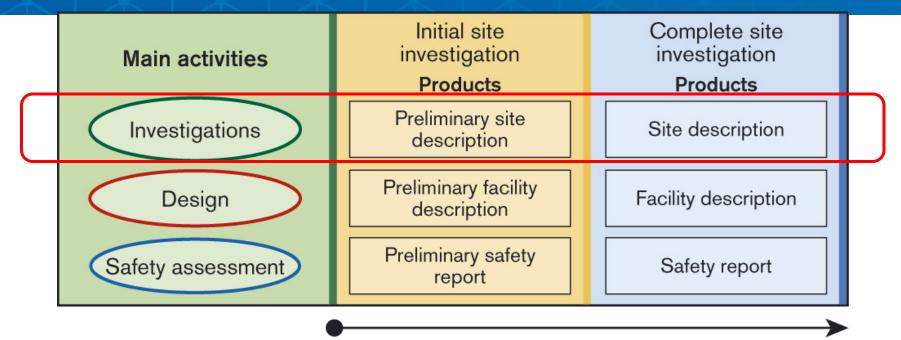

3


Äspö Hard Rock Laboratory 1986-

The purpose of Äspö HRL


- Provide input to performance assessments
 - in situ data from a previously non-disturbed rock mass
 - process understanding
 - assessment of model validity
- Develop, test and evaluate methods for investigation, repository construction and waste emplacement
- Provide experience and training of staff

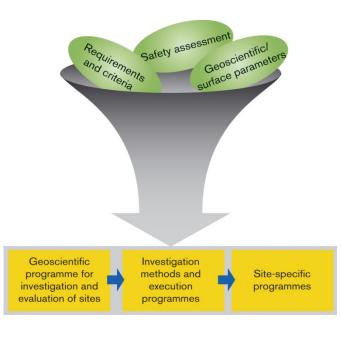
The site investigations performed



- Two site investigations were performed
 - Forsmark
 - Oskarshamn (Simpevarp/Laxemar)
- The investigation programme were similar, and performed in parallell
- Presented examples are mostly from Simpevarp/Laxemar

The main activity "Investigations"

Characterization of the geosphere and the biosphere


Start site investigation 2002

The work at each site was divided in two main groups:

- Investigation; producing primary data
- Site modelling; producing site descriptions

The programme development 1

- An important issue for the site investigation programme development was to specify what information/data is needed
- The information/data users were
 - Safety assessment (long term safety)
 - Design and enginering (layout, stability)
 - Environmental Impact statement
 - "General (geoscientific) understanding"
- Strategies
 - dividing the task in diciplines,
 - performance in a step-wise procedure,
 - integration between diciplines,
 - interaction with the data/model users



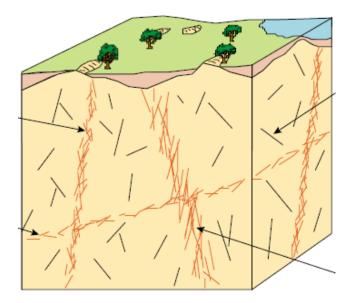
The programme development 2

- Investigation methods feasible for collecting data and for testing rock properties were selected, and further developed when needed
- Extensive experiences from earlier site investigations, mainly
 - Study site investigations; 1977-1986
 - Stripa projects; 1977-1991
 - Äspö Hard Rock Laboratory; 1986-, pre-investigation, construction and experiental phase
- An appropriate sequence of activities were compiled to a generic investigation programme (TR-01-29)
- After selection of candidate sites, the programme was adapted to site specific programmes (R-01-42, R-01-44 (in swedish))

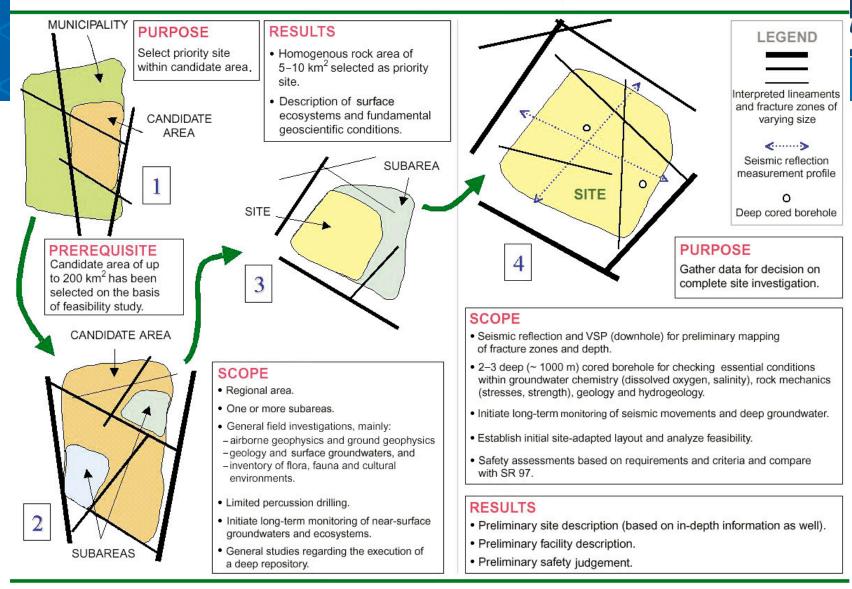
Some information of importance for the characterisation

Geology

- Rock type (distribution and properties)
- Major deformation zones, dividing the rock mass into rock blocks (occurence and character)
- Fracturing within the rock blocks (frequency and character)

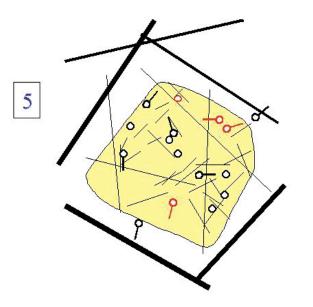

Rock mechanics and thermal properties

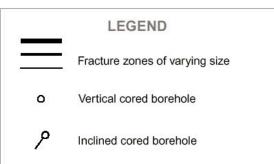
- Properties of intact rock and fractures
- Rock stress (magnitude and orientation)
- Thermal conductivity


Hydrogeology

- Hydraulic conductivity of rock mass
- Transmissivity of deformation zones
- Interaction between bedrock and soil
- Hydrogeochemistry
- Water chemistry
- Fracture minerals

Transport properties


INITIAL SITE INVESTIGATION



L

1

COMPLETE SITE INVESTIGATION

PURPOSE

Gather the necessary supporting data for selection of site and application for siting permit.

SCOPE

- Supplementary geological and geophysical ground surveys on the site and in the regional environs.
- Drilling programme (percussion and cored drilling) with measurements including:
 - measurement and sampling during drilling,
 - core mapping, BIP (Borehole Image Processing), geophysical measurements,
 - flow logging, injection tests, pumping tests, cross-hole tests,
 - dilution tests, groundwater sampling/analysis.
 - in-situ rock stress measurements and laboratory analyses of rock samples.
- · Continued long-term monitoring.
- Activities governed by site-specific conditions and arising questions (cf. red symbols in figure at left, i.e. \circ).
- Site-specific databases with quality-assured primary information.
- · Site models on regional and local scale.
- · Site-adapted deep repository facility and analysis of feasibility.
- · Complete safety assessment carried out.
- · Background information for EIA consultations and EIS document.

RESULTS

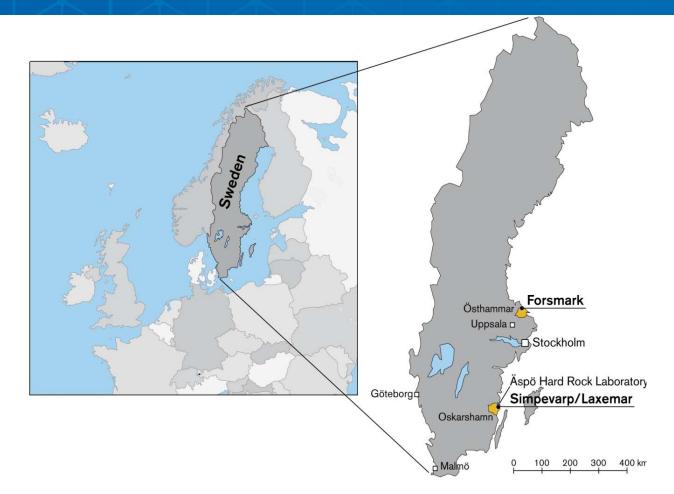
- Site description.
- Facility description.
- Safety report.

Siting factors

	Safety related	site characteristics				
	Bedrock composi	Bedrock composition and structure				
/	Future climate					
	Rock mechanical	Rock mechanical conditions				
Technology for executio	Groundwater flow	Groundwater flow				
	Groundwater con	Groundwater composition Retardation				
Flexibility	Retardation					
Technical risks		Biosphere conditions				
Technology development ne	eds Qverall site under	rstanding				
Functionality, operational as		Societal resources				
Synergies		Suppliers, human resources				
Costs						
Health	n and environment	Public and private services				
		Communications				
Occupational health and radiation protection						
	lenvironment					
	al environment					
Reside	ntial environment					
Manag	ement of natural resource	25				

SVENSK KÄRNBRÄNSLEHANTERING

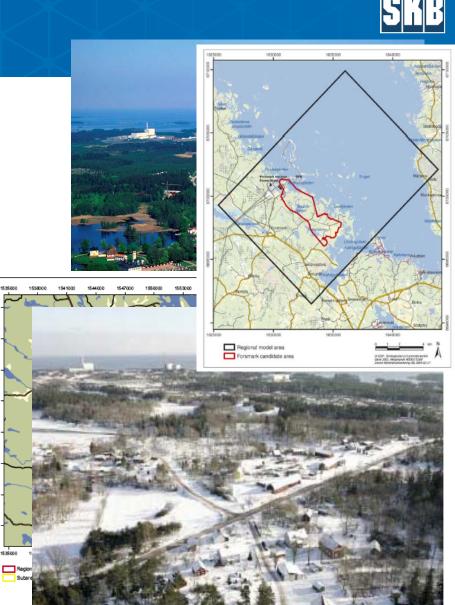
Site characterisation and site selection


Site characterisation in Sweden for a repository for spent nuclear fuel

<u>Candidate sites</u>: Forsmark and Laxemar-Simpevarp

Investigations and modelling work: 2002-2008

Site selection: 2009


Sites

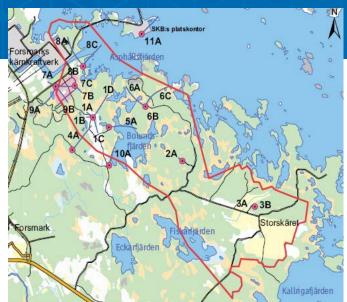
• Forsmark site

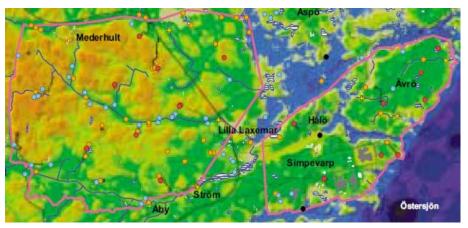
- flat topography
- below the highest shoreline at last deglaciation, 6 mm uplift per year
- metamorphosed medium-grained granite to granodiorite (metagranite) formed between 1,900 and 1,850 million years ago

• Laxemar site

- relatively flat topography
- below the highest shoreline at last deglaciation, 1mm uplift per year
- granite and quartz monzodiorite, some 1,800 million years old

Site investigation data

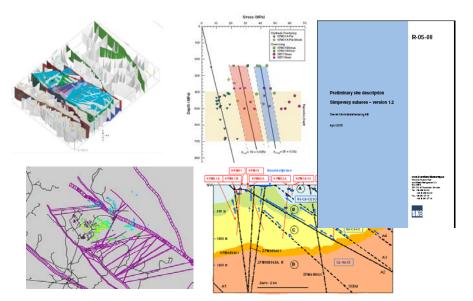

SKB

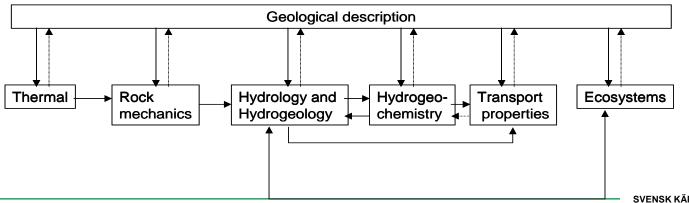

• Surface investigations

- airborne photography, airborne and surface geophysical investigations
- lithological mapping and mapping of structural characteristics
- investigations of Quaternary deposits
- meteorological and hydrological monitoring, hydrochemical sampling of precipitation, surface waters and shallow groundwater investigations

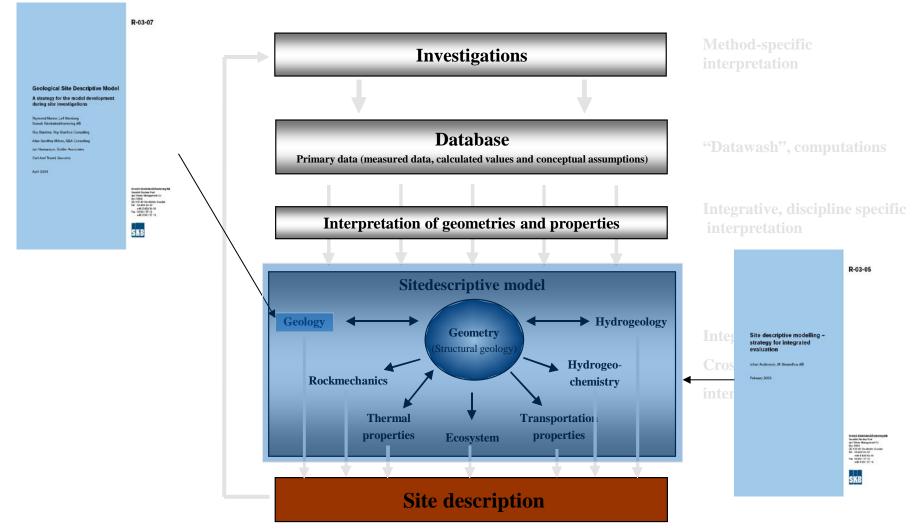
• Drilling and borehole measurements

- 14 (<u>Forsmark site</u>) and 20 (<u>Laxemar site</u>) deep (800 1,000 m) cored drilled boreholes
- Several more shallow core drilled and percussion drilled boreholes
- Mapping, testing and monitoring boreholes and bore cores (geology, thermal properties, rock mechanics, hydrogeology, chemistry)
- Many soil/rock boreholes





Evaluation of field data – Site Descriptive Model


- Synthesis
 - geology, rock mechanics, thermal properties, hydrogeology, hydrogeochemistry and surface system
- Traceability
 - From field investigation to 3D interpretation
- Assessment of uncertainties and confidence
- Used by Design and Safety Assessment
- Usually a new version after each data freeze

Site Descriptive Modelling

QA and Peer Review

- Clearance procedures for entering data into Site database (SICADA)
- Internal Peer Review
 - documented (templates)
 - SKB staff
 - independent expert group
- International review teams set up by the authorities
 - review all published reports
 - Tracking Issue List
- Seminars held about two times every year.

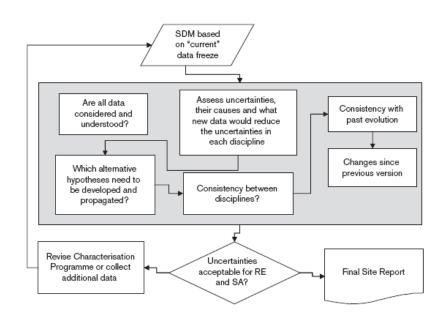
All these actions *essential*!

Review o	f documen	t				1(2)
Type:	Report	Review date:	#Please fill i		Revision #:0.1	Revision date: 2007-07-03
Author(s):	Pär-Erik Back1, 1:Geo Innova A 2:Sweco Viak	John Wrafter1, Lars Ro B	sén2 & Jan Sundt)erg1		
Document :	Thermal properties – Site Descriptive modelling of Forsmark, stage			ark, stage		
Reviewer (s):	D . D	r name#				

Space for general comments

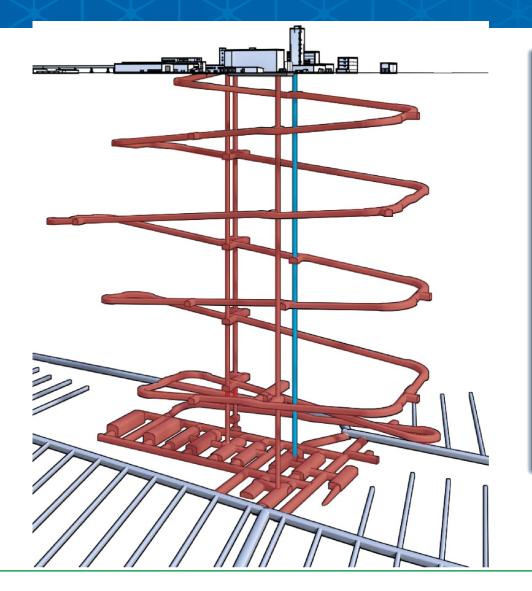
S

To be filled in by the Reviewer					To be filled in by the Author
ID P	Page	Section	Content	Comment/Question	Revision Correction/Explanation
1 .			Reference is made for example by using cited text, figures, tables, etc.	Advisory comment or question. Proposal for improvements.	What correction is undertake in respect of the given comments or questions? Explanation in case the comment left without notice.



SVENSK KÄRNBRÄNSLEHANTERING

Confidence Assessment



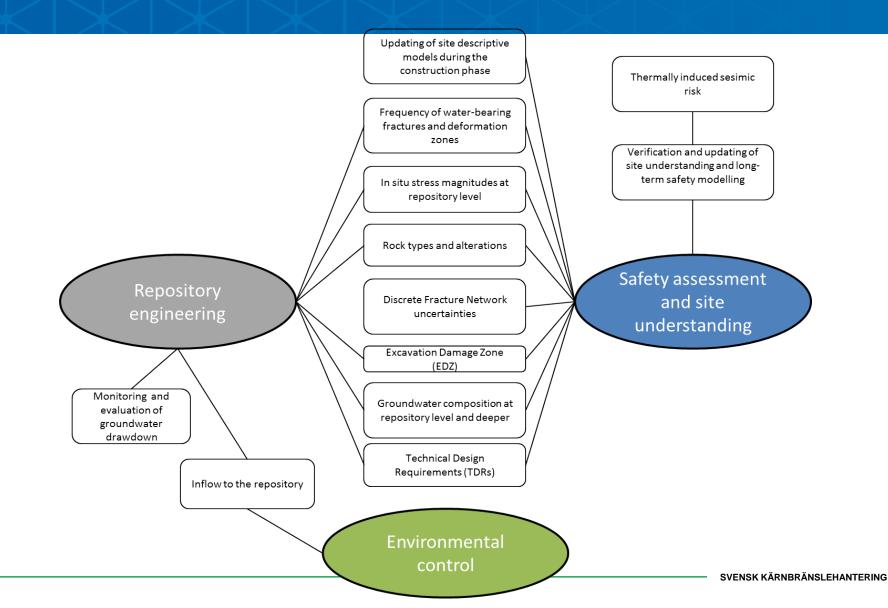
- Confidence assessment protocols
- Aim at identifying and quantifying uncertainty
 - including alternatives
- Explore various origins of uncertainty
- Procedure
 - experts first answer
 - assessed and revised in a workshop with all experts
- Feedback to continued investigations
- Documented

Accesses and Central area

Accesses & Central area

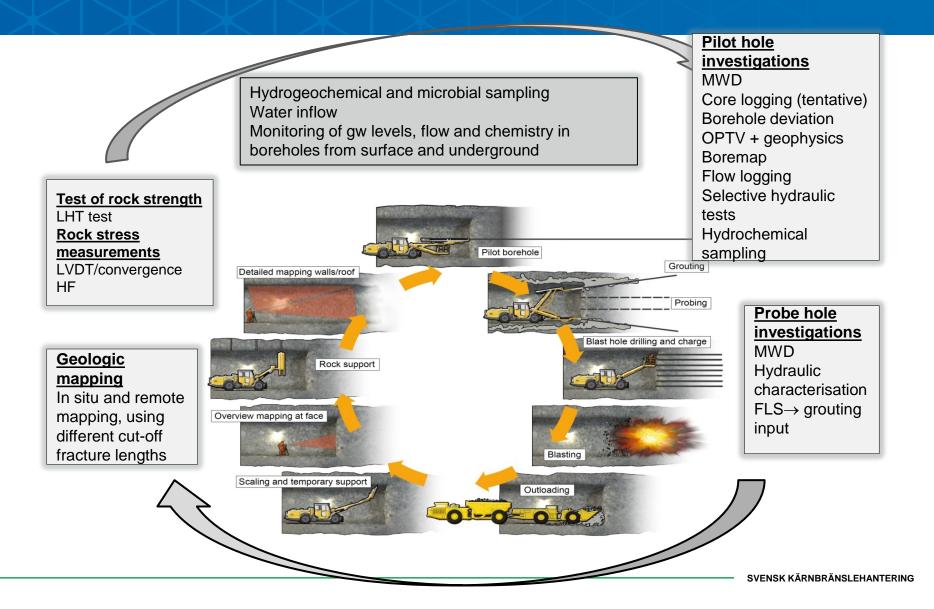
Ramp: 4800 m Skip shaft: 535 m Elevator shaft: 490 m Ventilation shafts (x2): 450 m Central area halls (x7): 40-65 m Central area transport tunnels: 500 m

Niches connecting to shafts and for vehicles/equipment


Estimated development time: 6 years

Ramp: 4.5 years Skip shaft: 2.5 years

Central area: 1-1.5 years


Data needs and requirements

Key investigations

Investigations and monitoring

- Enhance the existing database for the bedrock with new data from underground investigations and monitoring.
- Identify responses in monitoring boreholes from rock excavations and hydraulic tests.
- Input to key issues and requirements.
- Evaluate the validity of and confidence in SDM-Site

Key issues and requirements

- Investigations carried out throughout the excavation of the accesses and Central area and in conjunction with rock excavation cycle.
- Investigations and measurements related to Post closure safety will be given a high priority during construction.
- Sufficient time for investigations is an important prerequisite for planning the rock excavation cycle and production.

Validity of and confidence in SDM-Site

- **Compare data sets** check if data/models from surface based boreholes match those from underground pilot holes.
- **Compare model prediction and outcome** check whether modelled geometries and properties from SDM-Site are correct:
 - Stratigraphy and thickness of Quaternary deposits.
 - Location and geometry of deterministically modelled DZ where these can be expected to intersect the accesses and Central area
 - Statistics of fracture transmissivity of flowing fractures in underground pilot holes in relation to statistics used in SDM-Site for DFN modelling of flowing fractures
 - Rock stress orientation and magnitude vs. depth
 - Spatial distribution of groundwater composition vs. depth.
- Ongoing monitoring of groundwater levels in boreholes important for baseline and the evaluation of pressure responses.

Investigations in the ramp

- Spiral shaped ramp with 4.5 revolutions, → opportunity to investigate anisotropy and statistical geoinformation.
- Test, update and fine-tune investigation strategies and methods.
- Provide input to rock excavation (reinforcement measures) and design (stress orientation and magnitude).
- Prove that the excavation technique fulfils the Technical Design Requirements related to EDZ before ramp reaches -370 m (in a separate niche).
 - Probe hole drilling and associated investigations (e.g. FLS)
 - Pilot hole drilling and assoc. investigations (20% of the ramp).
 - In situ stress measurements in connection to niches.
 - Measurement of water inflow to the ramp every 150-200 m in weirs.
 - Hydrogeochemical and microbial sampling and monitoring (in niches)

Strategy for pilot hole drilling in the ramp

- Understanding of expected rock conditions where the ramp will pass
- Rock excavation requires information regarding: water-bearing fractures when passing through DZ judged to require reinforcement.
- Pilot hole drilling ~20% of the total ramp length~1000 m:
 - Confirm and investigate boundary between fracture domains
 - Characterise intercepts with deterministically modelled DZ
 - Provides data for DFN-modelling
 - Provide input to construction and design
 - Hydraulic tests, geophysical logging and (hydrogeochemical sampling)

Thank you for your attention!

29